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The exactness properties putatively characterising (∞, ℓ)-topoi should be
phrased in terms of effectivity of higher congruences. In the 2-dimensional
case, it is known that 2-congruences are internal categories whose under-
lying graph is a discrete two-sided fibration, but for higher values of ℓ this
admits two natural generalisations: internal categories whose underlying
graph is an (ℓ−2)-categorical two-sided fibration (recently studied by Loubaton),
or internal (ℓ − 1)-categories whose underlying (ℓ − 1)-graph is an iterated
discrete fibration.

I will explain how to compare both to a third notion suggested by formal
enriched category theory: codiscrete two-sided cofibrations. While (ℓ − 2)-
categorical fibrations require lax limits, the iterated discrete fibrations can
be studied with very expressive weighted limits: the lost Australian folk-
lore of generalised kernels, taking full advantage of the enrichment over
(∞, ℓ)-Cat. If time allows, I will then use these tools to elucidate the struc-
ture of the fibration classifiers.

1. Motivation: exactness properties of allegories

Let E be a regular category (for example a pretopos), so that we may form the 2-category
Rel(E) of relations in E. A right-adjoint P to the natural inclusion ι : E → Rel(E) satis-
fies

E(E,PF) ≃ Rel(E)(E, F) = τ≤−1(E/E×F)

so that P exists if and only if E admits local subobject classifiers, i.e. if and only if it is
an elementary topos.

There is even more on topoi we can say from the perspective of their categories of
spans1, in particular on their exactness properties: the congruences (internal equival-

1In fact the situation can be axiomatised by studying dagger 2-categories behaving enough like Span(E),
called allegories, but I will not pursue the details further here.
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ence relations) whose effectivity is at play are exactly the symmetric monads in Rel(E)
(and effectivity corresponds to their splitting as idempotent endomorphisms).

For (from now one, always presentable) (n, 1)-topoi (with 1 ≤ n ≤ ∞), we have
a similar story where relations—aka (−1)-truncated spans—are replaced by (n − 2)-
truncated spans: an (n, 1)-topos E must have a classifier for (n − 2)-truncated morph-
isms (up to size restrictions which I will always leave implicit), and its existence along
with local cartesian closedness is equivalent to the existence of a right-adjoint to E ↪→
Spanτ≤(n−2)(E).

In addition, the effectivity condition for (n, 1)-topoi is the effectivity of “n-efficient”
groupoids, groupoid objects whose underlying graph is (n − 2)-truncated. These can
again be seen as symmetric monads in Spanτ≤(n−2)(E).
Remark 1.1. As a small digression, the role of the category of spans becomes especially
enlightening when we fix n = ∞. Indeed, an alternate characterisation of (∞, 1)-topoi
is that they are the presentable (∞, 1)-categories in which all colimits are van Kampen.
But, as observed by [SH11] in the 1-categorical case, van Kampen colimits are precisely
those preserved by the inclusion E → Span(E). Thus E is an (∞, 1)-topos when E →
Span(E) preserves all colimits, which thanks to presentability means it admits a right
adjoint (again up to size restrictions, so in fact it only has “enough right adjoints”),
explaining the equivalence between the two characterisations.

As we moved from 1-topoi to (∞, 1)-topoi, the monomorphism condition gradually
weakened to ∞-truncatedness, which is no condition at all. Unfortunately, there is
little hope of this pattern carrying over to higher categorical levels. Indeed, the 2-
category of categories, which is the prototypical 2-topos, fails to be locally cartesian
closed as the only exponentiable morphisms are the Conduché fibrations, among which
the Grothendieck fibrations and opfibrations, suggesting that slices should be replaced
by fibrational slices (as is also done in the∞-categorical setting by [AM24]). Likewise,
as integrated by [Web07], we cannot expect a classifier for arbitrary morphisms, but
only for discrete2 fibrations and opfibrations.

The importance of discrete fibrations for 2-topos theory was also recognised by Street’s
work [Str82] on the 2-categorical Giraud theorem, as furnishing the right categorifica-
tion of congruences.

Definition 1.2. A 2-congruence, or catead, in an (∞, 2)-category K, is an internal category

X• : ∆
op → K such that the span X0

d1←− X1
d0−→ X0 is a two-sided discrete fibration.

The prototypical example of a catead is the simplicial kernel of an arrow f : A → B,
which is defined as the simplicial object

· · · f ↓ f ↓ f f ↓ f A

where f ↓ · · · ↓ f is the iterated comma (f ↓ f) ×A · · · ×A (f ↓ f). The functor
ker : K2 → K∆op

has a right adjoint computing the 2-categorical quotient of a simpli-
cial object, known as a codescent object from [Str04], and which can be characterised

2I follow the terminology of Riehl–Verity, in which “discrete” does not mean truncated, but 0-categorical,
so in the homotopical setting (∞, 0)-categorical i.e. groupoidal.
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by an explicit (but complicated) universal property or defined as a weighted colimit as
we will see later.

Having these definitions, we can say that an (∞, 2)-category is effective if every
catead is the simplicial kernel of its codescent object3.

If we now wish to consider the matter for (∞, ℓ)-categories, with now ℓ ∈ N greater
than 2, there are two natural further categorifications of the notion of congruence:

• In keeping with the pattern of the “(n − 2) dimensionality condition” for (n, 1)-
topoi, we may define an ℓ-congruence to be an internal category whose underly-
ing graph is an (ℓ− 2)-categorical two-sided fibration.

• Making instead the shape higher-categorical, and from the observation from [Ker24]
that internal (ℓ−1)-categories4 are (globular) monads in (ℓ−1)-iterated spans, we
may define an (ℓ−1)-catead to be an internal (ℓ−1)-category X• : Θℓ−1 → K whose
underlying (ℓ− 1)-graph is an iterated discrete two-sided fibration.

For defining effectivity of ℓ-congruences, the same approach as for ℓ = 2 can be used,
replacing the limits and colimits by their lax (that is, Gray-enriched) variants, as done
in [Mes24] for ℓ = 3 and in [Lou25] for all values of ℓ. For (ℓ−1)-cateads, we can remain
in the realm of strong limits by making a good use of (∞, ℓ− 1)-Cat-weighted limits.

2. Cellular kernels and codescent objects

Let V be a closed monoidal (∞, 1)-category with limits and colimits. (In practice we
will only use today the case V = (∞, ℓ− 1)-Cat with its cartesian monoidal structure,
although the case of the Gray tensor product can be useful to recover the setting of
Loubaton’s ℓ-congruences.)

Recall that if V is semi-cartesian, a (conical) limit limD of a V-functor D : I → C is
determined by the requirement that its universal cone const1⇒ C(limD,D−) induce
an equivalence C(C, limD) ≃ VI(const1,C(C,D)). The idea of weighted limits is to
replace the presehaf const1 by a shape to be designed to the user’s specifications.

Definition 2.1. Let D : I→ C a V-functor.
A limit of D weighted by a V-copresheaf W : I → V is an object {W,D} equiped with a

universal W-weighted cone W ⇒ C({W,D} ,D−), i.e. inducing an equivalence

C(C, {W,D}) ≃ VI(W,C(C,D)). (1)

A colimit of D weighted by a V-presheaf P : Iop → V is an object P ⋆ D equipped with a
universal P-weighted cocone, i.e. inducing an equivalence

C(P ⋆D) ≃ VIop
(P,C(D, C)). (2)

3The definition of regularity is a bit subtler, cf. [BG14], and I will focus only on effectivity.
4We formally define internal n-categories as functors from the opposite of Joyal’s cell category Θn of

pasting diagrams satisfying the Segal and univalence-completeness condtions.
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Example 2.2. In the classical enrichment over V = Set, take I = D1 the walking arrow

and W the functor with values (2→ 1). Then a W-weighted limit of a diagram A
f
−→ B

is a kernel pair ker(f) = A ×B A, while a W-weighted colimit of a parallel pair is its
coequaliser.

Example 2.3. Take V = Cat and I = ∨ the walking cospan. Then for the weight W with

values D0
⌜0⌝
−−→ D1

⌜1⌝←−− D0, a W-limit of X−
0 → X1 ← X+

0 is a comma

X−
0 ↓

X1

X+
0 X+

0

X−
0 X1.

(3)

We can more generally define the k-comma of X−
0 → X1 ← X+

0 as its limit weighted

by D0
⌜0⌝
−−→ Dk

⌜1⌝←−− D0. More explicitly, it is the universal way to complete the cospan
to a square filled with a (1 + k)-cell (and its supporting source and target boundaries)
as in

X−
0

k⇓
X1

X+
0 X+

0

X−
0 X1.

. . .

We will now generalise weighted limits further to endow them with better functori-
ality properties.

Recall that a V-profunctor from I to B is a V-functor Bop ⊗ I → V. For example,
every V-functor f : I → B gives a profunctor f∗ = B(id,f) : I −7→ B and f∗ =
B(f, id) : B −7→ I.

Definition 2.4. A V-profunctor W : I −7→ B can be curried to Bop → VI, and thus seen as a
weight in the previous sense parametrised by Bop. A limit of D : I → C weighted by W is a
V-functor

B
b7→W(b,−)
−−−−−−−→ (

VI
)op {−,D}

−−−→ C. (4)

Remark 2.5. While I have chosen here this presentation for the sake of exposition, limits
and colimits weighted by profunctors are more abstractly defined as giving lax exten-
sions and lifts in the proarrow equipment V-Pr of , which thanks to formal nonsense
endows them with good functoriality and duality properties. In particular, one can
easily obtain the following observation:

Proposition 2.6. Let W : I −7→ B be a profunctor, and C be an object admitting limits and
colimits. The functor {W,−} : CI → CB is right-adjoint to W ⋆−: CB → CI.
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Corollary 2.7. For each I ∈ I, the “evaluated colimit” functor (W ⋆ −)I : CB → C admits
a right adjoint ∆WI

which sends C ∈ C to the functor ∆wI
(C) : B → C such that, for every

B ∈ B, the object ∆WI
(C)B of C is the power CW(B,I).

The main example of this construction is a general notion of kernel/quotient systems,
which is due to [BSS99].

Construction 2.8. Since V admits all colimits, free V-categories generated by any (∞, 1)-
categories exist. In particular, we will still denote by 2 the V-category freely generated
by the category 2, so that the power V2 coincides with the V-category of V-functors
2→ V.

Let X be a sub-V-category of V2 containing idI, where I is the monoidal unit of V. The
restricted evaluation V-functor

X× 2 ↪→ V2 × 2→ V (5)

defines a V-profunctor Ev : 2 −7→ Xop.

Definition 2.9. Let C be a V-enriched∞-category.
The X-kernel of an arrow f of C, given by a V-functor ⌜f⌝ : 2→ C, is the weighted limit

kerX f := {Ev, ⌜f⌝} : Xop → C. (6)

The X-quotient of a V-diagram D : Xop → C is the weighted colimit

quot
X
D :=Ev ⋆D : 2→ C. (7)

As a direct application of proposition 2.6, if C admits all enriched limits and colimits,
the V-functor kerX is right-adjoint to quot : CXop → C2.

Example 2.10. The most traditional application of this paradigm is the case of the en-
richment in V = (∞, 1)-Cat, so that V-categories are (∞, 2)-categories. There we start
from the eso/ff factorisation system, which is densely generated by the inclusions
n = obj n→ n. These then form a category X equivalent to ∆, so that the kernel-quotient
adjunction becomes an adjunction C∆op

⇄ C2.
By the decomposition n ≃ 2 ⨿1 · · · ⨿1 2 and the fact that taking weighted limits

preserves limits, we recover the earlier adjunction of simplicial kernel and codescent
objects.

Example 2.11. Applying to the basic enrichment in V =∞-Grpd, so that V-categories are
simply (∞, 1)-categories, also produces interesting results. We pick here the epi/mono
factorisation system, which can be seen as induced from the previous bo/ff factorisa-
tion system under the inclusion ∞-Grpd ↪→ (∞, 1)-Cat. In particular, noting that this
inclusion has a right-adjoint C 7→ C[all−1] inverting all arrows of an (∞, 1)-category, it
is densely generated by the maps n → n[all−1] ≃ 1, giving a category X equivalent to
that of finite sets.

Another way of seeing this category is as the crossed simplicial group ∆S obtained by
adding the symmetric group Sn as automorphism group of the object n of ∆. We then
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see that the X-kernel of an arrow f is its Čech nerve, natural extension of the kernel pair
to an internal category, equipped with the symmetric structure permuting the factors,
while on the X-quotient side we see that geometric realisation is naturally defined not
for plain simplicial objects but for symmetric simplicial objects.

Following from these examples, we get a natural definition of cellular kernels as ℓ-
cateads and their higher codescent objects.

Construction 2.12. The eso/ff factorisation system on V = (∞, ℓ− 1)-Cat is densely gen-
erated by the maps obj(T) → T for T any object of Θℓ−1: this gives a shape category
equivalent to Θℓ−1. The W-weighted limit of an arrow f : A → B in an (∞, ℓ)-category,
called its cellular kernel, is then the cellular object whose value at Dk ∈ Θℓ−1 is the
self-k-comma f ⇓k f (and the value on an arbitrary pasting diagram is computed by
expressing it as a amalgamated sum of globes and turning that into a fibre product of
commas).

The W-weighted colimit of a cellular object, which we might call its cellular co-
descent object, is more difficult to describe but the intuition is that the weight allows
us to understand the objects in “dimension” k as defining k-arrows. In other words, we
can think of an (ℓ − 1)-cellular object as prescribing a level-by-level description of the
(ℓ− 1)-categorical structure of its codescent object.

We will see later techniques for computing some codescent objects, but let us mention
for now a special example that demonstrates the above intuition:

Example 2.13 ([Bou10]). When K = (∞, ℓ− 1)-Cat and X• is a complete Segal object
all of whose terms are ∞-groupoids, its codescent object is the (∞, ℓ − 1)-category it
defines.

3. Bipartite kernels of codiscrete cofibrations

I have argued that, just as ℓ-congruences are known to, (ℓ−1)-cateads provide a sensible
approach to (∞, ℓ)-categorical exactness. There now remains the questions of how the
two relate to each other. We will now see that they are in a sense equivalent.

In order to relate congruences and cateads, it will prove useful to understand them
both in relation to a third notion. Indeed, the essential characteristic of the (ℓ − 2)-
categorical two-sided fibrations at the heart of ℓ-congruences in (∞, ℓ− 1)-Cat is that
they encode (∞, ℓ − 1)-profunctors. This is however very reliant on the enrichment in
(∞, ℓ− 2)-Cat, and for general enrichment in an arbitrary monoidal category V, [Str80]
noticed that V-profunctors are instead always recovered by the codiscrete cofibrations
in the 2-category V-Cat.

Definition 3.1. A codiscrete two-sided cofibration in an (∞, 2)-category K is a discrete
two-sided fibration in Kop.

Remark 3.2. As codiscrete cofibrations are a purely 2-categorical notion, we may as well
define them in K an (∞, ℓ)-category as codiscrete cofibrations in the underlying (∞, 2)-
category.
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As it turns out, codiscrete cofibrations are a much more rigid kind of object than
discrete fibrations.

Proposition 3.3 ([Str80]). Consider a cospan E→ B← F in V-Cat.

• It is codiscrete if and only if the objects of B are the disjoint union of those of E and F.

• It is a two-sided cofibration from E to F if and only if there are no morphisms from the
objects of E to those of F i B.

We now have three structures, (ℓ − 2)-categorical fibrations, codiscrete cofibrations,
and iterated discrete fibrations, living in three slightly different yet related shapes:
spans, cospans, and iterated spans. To compare them, we will use our weighted limits
machinery—in fact a two-sided or “bipartite” version of the cellular kernels/quotients—
to obtain adjunctions between these span-shaped categories.
Construction 3.4. Let ∨ℓ be the locally full sub-(∞, ℓ + 1)-category of G/Dℓ

∨ (where G is
the category of globes and ∨ the walking cospan) spanned by

objects: the cospans (
{0−}→ Dℓ

) (
{0+}→ Dℓ

)
(T → Dℓ)

(8)

where T is a globe (so with objects 0− and 0+) and T → Dℓ is inert,

morphisms: the component-wise inert transformations.

We see again that it is equivalent to G/Dℓ
, which as observed in [Str00] corepresents

ℓ-iterated spans, that we may interpret as bipartite ℓ-graphs.
The restricted evaluation functor ∨×∨ℓ → ∨× (∞, ℓ)-Cat

∨ ev
−→ (∞, ℓ)-Cat defines a

profunctor Ev : ∨ −7→ ∧ℓ := ∨ℓ
op.

Definition 3.5. Let K be an (∞, ℓ+ 1)-category.
The bipartite kernel of a cospan X : ∨→ K is the weighted limit←→

kerX := {Ev, X} : ∧ℓ → K. (9)

The bipartite quotient of a bipartite ℓ-graph G : ∧ℓ → K is the weighted colimit←−→quotG :=Ev ⋆G : ∨→ K. (10)

Remark 3.6. The bipartite kernels are very easy to describe: for any cospan X−
0

f
−→ X1

g←−
X+
0 , the value of

←→
ker(f, g) at (0± → Dk) is f

k⇓g, so that we can think of
←→
ker(f, g) as being

simply f
•⇓ g.

In particular, two-sided kernels are always iterated discrete fibrations. The two-sided
quotients are a more complicated combination of higher cocommas, but are still codis-
crete cofibrations.
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Without any additional effort, we immediately obtain:

Corollary 3.7. There is a span of adjunctions

Span(K) Spanℓ−1(K)

Cospan(K)

−↑lax− ←−→quot

−↓lax− ←→
ker

⊣⊣ (11)

I will start on the lax side since, due to lack of skill with lax limits, there I can only
conjecture the equivalence:

Conjecture 3.8. For K nice enough (i.e. an (∞, ℓ)-topos, at least a category of internal
(∞, ℓ − 1)-categories in an (∞, 1)-topos), the adjunction on the LHS is idempotent, and so
restricts to an equivalence between (ℓ − 2)-categorical two-sided fibrations and codiscrete two-
sided cofibrations.

While I cannot provide the proof myself, a good pointer is that I expect it to be simply
a two-sided (or “bipartite”) adaptation of the comparison between higher congruences
and filtrations of [Lou25].

Now on the side of strong limits, I can actually state the result (expecting it to gener-
alise to the same class of (∞, ℓ)-categories).

Theorem 3.9 (in progress). For K = (∞, ℓ− 1)-Cat, the adjunction ←−→quot ⊣
←→
ker is idem-

potent, and so restricts to an equivalence between iterated discrete two-sided fibrations and
codiscrete two-sided cofibrations.

Idea of proof. The proof is essentially a two-sided (and ℓ-categorical) version of the ef-
fectivity of 1-cateads in [Bou10]: its main ingredient is the computation of the two-sided
quotient of an iterated span which is an iterated discrete fibration, generalising ex-
ample 2.13.

More precisely, I claim that if X• is an iterated discrete two-sided fibration in K =

(∞, ℓ− 1)-Cat, then the apex←−→quot(X•)1 of the cospan←−→quot(X•) is the “horizontal” (∞, ℓ−
1)-category of the double (∞, ℓ − 1)-category freely generated by X• seen as a double
(ℓ− 1)-graph.

Indeed, the right-adjoint to←−→quot(−)1 described by corollary 2.7 can be seen to decom-
pose as

K
Sq
−−→ (ℓ− 1)-Cat(K)→ (ℓ− 1)-Grph(K)→ (ℓ− 1)-BipartGrph(K) ⊃ DiscF ibℓ−1(K)

where Sq is the ℓ-categorical version of the square (or quintet) construction, the next
two arrows are forgetful functors, and the last (backwards) inclusion is the fact that,
when starting from a codiscrete cofibration, this composite produces an iterated dis-
crete fibration.

The two forgetful functors admit obvious left-adjoints, but the square functor does
not admit a left-adjoint in general. However, when astricting it to the double (∞, ℓ−1)-
categories that are (ℓ−1)-cateads, the construction of horizontal categories does provide
a left-adjoint.
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A. Epilogue: Globular fibration classifiers

If we argue that iterated fibrations should take the role of relations for higher exact
categories, we also expect they should have a classifier in higher topoi.

For (∞, 2)-topoi (where 2-congruences and 1-cateads), [Web07] introduced the nat-
ural categorification of the subobjects classifiers.

Definition A.1 (Weber). A classifying discrete opfibration in an (∞, 2)-category K is a
discrete opfibration Ω⋆ → Ω such that for any object K ∈ K, the functor

K(K,Ω)→ DiscOpfib(K)

given by pulling back Ω⋆ → Ω to a discrete opfibration over K is fully faithful.

Remark A.2. The fully faithful requirement, rather than an equivalence, is simply due
to size issues preventing all fibrations from being classified. We can call the ones in the
image of this functor the classified discrete opfibrations (thought of as the ones with
small enough fibres), and so for every classified discrete opfibration p : E → K there is
an essentially unique ⌜p⌝ : K→ Ω such that E ≃ K×Ω Ω⋆.

We can now simply mimic this definition with iterated fibrations (recalling that an
opfibration over K is a two-sided fibration from 1 to K).

Definition A.3. A classifying iterated discrete opfibration in an (∞, ℓ)-category K is an
iterated discrete two-sided fibration Ω⋆,• → 1×Ω such that for any classified iterated discrete
fibration E• → 1 × K, there is an essentially unique morphism K → Ω such that E is the
pullback of Ω⋆:

E• Ω⋆,• 1

K Ω

⌟

∃!

However, Ω⋆,• is a priori a complicated object, which we can only hope to understand
better. For this, we will rely on a refinement of the fibration classifier, due to [Mes25].

Definition A.4 (Mesiti). A good fibration classifier in an (∞, 2)-category K is an object Ω
equipped with a pointing ⊤ : 1 → Ω such that for any “classified” discrete opfibration p : E →
K, there is an essentially unique morphism ⌜p⌝ : K→ Ω such that E ≃ ⌜p⌝ ↓⊤.

As observed by [Mes25], the pullback gluing property of comma squares implies
that every good fibration classifier is in particular a fibration classifier, with classifying
fibration Ω⋆ = idΩ ↓⊤.

We now generalise to iterated fibrations using higher commas.

Definition A.5. A good iterated fibration classifier in an (∞, ℓ)-category K is an object Ω
equipped with a pointing ⊤ : 1 → Ω such that for any “classified” iterated discrete fibration
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E• → 1×K there is an essentially unique morphism K→ Ω making E• fit in the higher comma
square

E• 1

K Ω

⊤

∃!

. . .

as the two-sided kernel E• = K
•⇓
Ω
1.

As before, we find by gluing of higher commas that a good iterated fibration classifier

Ω admits a classifying iterated fibration Ω⋆,• = idΩ

•⇓⊤:

E• Ω⋆,• 1

K Ω Ω.

⌟
⊤

∃!

. . .
Corollary A.6. If an iterated fibration classifier Ω refines to a good iterated fibration classifier,
its classifying iterated fibration Ω⋆,• admits an explicit description as “higher-pointed objects”
(where a k-pointing means a k-arrow between two pointings) of Ω.
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