Brane actions for operads of (stacky) curves

David Kern
Institut Montpelliérain Alexandre Grothendieck
1st March 2023
Homotopical Methods in Algebraic Geometry at IHP

(Categorified) Gromov-Witten classes

$$
\begin{aligned}
& G_{0} \bar{M}_{g, n+1} \stackrel{\operatorname{Stab}_{*}}{\leftrightarrows} G_{0}\left(\amalg_{\beta} \bar{M}_{g, n+1}(X, \beta)\right) \stackrel{\left(\mathrm{ev}_{1}, \ldots, \mathrm{ev}_{n+1}\right)^{*}}{\leftrightarrows}\left(G_{0} X\right)^{\otimes n+1} \\
& \bigcup \otimes\left[\operatorname{oir}_{\pi_{g}, n+1}(X)\right]
\end{aligned}
$$

(Categorified) Gromov-Witten classes

$$
\begin{aligned}
& \bar{M}_{g, n+1} \stackrel{\coprod_{\beta \in \mathrm{Eff}(X)} \overline{\mathcal{M}}_{g, n+1}(X, \beta)}{\substack{\text { Stab }}}{ }^{\left(\mathrm{ev}_{1}, \ldots, \mathrm{ev}_{n+1}\right)} \\
& G_{0} \bar{M}_{g, n+1} \stackrel{\mathrm{Stab}_{*}}{\longleftarrow} G_{0}\left(\coprod_{\beta} \quad \bar{M}_{g, n+1}(X, \beta)\right) \stackrel{\left(\mathrm{ev}_{1}, \ldots, \mathrm{ev}_{n+1}\right)^{*}}{\longleftarrow}\left(G_{0} X\right)^{\otimes n+1}
\end{aligned}
$$

Lemma [Schürg-Toën-Vezzosi, Mann-Robalo]
$\left[0 \mathrm{vir}_{\mu_{g, n+1}(X)}\right]$ "is" the structure sheaf of derived thickening $\mathbb{R} \cdot \bar{\Omega}_{g, n+1}(X)$

(Categorified) Gromov-Witten classes

$\operatorname{Corr}^{\mathrm{b}} \overline{\mathcal{M}}_{g, n+1} \stackrel{\operatorname{Stab}_{*}}{\leftrightarrows} \operatorname{Corr}^{\mathrm{b}}\left(\amalg_{\beta} \mathbb{R}^{\left(\bar{M}_{g, n+1}(X, \beta)\right)} \stackrel{\left(\mathrm{ev}_{1}, \ldots, \mathrm{ev}_{n+1}\right)^{*}}{\leftrightarrows}\left(\mathbb{C o r}^{\mathrm{b}} X\right)^{\otimes n+1}\right.$

Lemma [Schürg-Toën-Vezzosi, Mann-Robalo]

$\left[0 \mathrm{Ovir}_{\bar{\mu}_{g, n+1}(X)}\right]$ "is" the structure sheaf of derived thickening $\mathbb{R}{\overline{M_{g}}}_{g, n+1}(X)$

(Categorified) Gromov-Witten classes

$\operatorname{Corri}^{\mathrm{b}} \overline{\mathcal{M}}_{g, n+1} \stackrel{\operatorname{Stab}_{*}}{\leftrightarrows} \operatorname{Corr}^{\mathrm{b}}\left(\amalg_{\beta} \mathbb{R}^{\left(\bar{M}_{g, n+1}(X, \beta)\right)} \stackrel{\left(\mathrm{ev}_{1}, \ldots, \mathrm{ev}_{n+1}\right)^{*}}{ }\left(\operatorname{Corb}^{\mathrm{b}} X\right)^{\otimes n+1}\right.$

Lemma [Schürg-Toën-Vezzosi, Mann-Robalo]

$\left[0_{\mu_{g, n+1}(X)}^{v_{i r}}\right]$ "is" the structure sheaf of derived thickening $\mathbb{R} \bar{M}_{g, n+1}(X)$
Idea: Algebra (in spans) over the operad $\overline{\mathcal{M}}_{0, \bullet+1}$

Case of a stacky target

For $\bar{M}_{g, n+1}(X)$ to be proper: need stacky curves [Abramovich-Graber-Vistoli] At a marking locally of the form $\operatorname{Spec}(\kappa[x]) / \mu_{r}$ At a node $\operatorname{Spec}(\kappa[x, y] /\langle x y\rangle) / \mu_{s}$ with balanced action $(x, y) \mapsto\left(\zeta \cdot x, \zeta^{-1} \cdot y\right)$

Evaluation maps

$$
\begin{aligned}
\mathrm{ev}_{i}: \mathbb{R} \overline{\mathcal{M}}_{g, n+1}(X) & \rightarrow \\
\left(C, \Sigma_{1}, \ldots, \Sigma_{n+1}, f\right) & \mapsto f\left(\Sigma_{i}\right)
\end{aligned}
$$

Case of a stacky target

For $\bar{M}_{g, n+1}(X)$ to be proper: need stacky curves [Abramovich-Graber-Vistoli]
At a marking locally of the form $\operatorname{Spec}(\kappa[x]) / \mu_{r}$ At a node $\operatorname{Spec}(\kappa[x, y] /\langle x y\rangle) / \mu_{s}$ with balanced action $(x, y) \mapsto\left(\zeta \cdot x, \zeta^{-1} \cdot y\right)$

Evaluation maps

$$
\begin{aligned}
\mathrm{ev}_{i}: \mathbb{R} \overline{\mathcal{M}}_{g, n+1}(X) & \rightarrow\left\{\mu_{\left.r_{i}-\text { gerbes in } X\right\}}\right. \\
\left(C, \Sigma_{1}, \ldots, \Sigma_{n+1}, f\right) & \mapsto f\left(\Sigma_{i}\right)
\end{aligned}
$$

Cyclotomic loop stack

$$
\overline{\mathscr{L}}_{\mu} X:=\coprod_{r \geqslant 1} M_{a-r^{r e p}}\left(\mathcal{B} \mu_{r}, X\right) / \mathcal{B} \mu_{r}
$$

Case of a stacky target

For $\bar{M}_{g, n+1}(X)$ to be proper: need stacky curves [Abramovich-Graber-Vistoli]
At a marking locally of the form $\operatorname{Spec}(\kappa[x]) / \mu_{r}$ At a node $\operatorname{Spec}(\kappa[x, y] /\langle x y\rangle) / \mu_{s}$ with balanced action $(x, y) \mapsto\left(\zeta \cdot x, \zeta^{-1} \cdot y\right)$

Evaluation maps

$$
\begin{aligned}
\mathrm{ev}_{i}: \mathbb{R} \overline{\mathcal{M}}_{g, n+1}(X) & \rightarrow\left\{\mu_{\left.r_{i}-\text { gerbes in } X\right\}}\right. \\
\left(C, \Sigma_{1}, \ldots, \Sigma_{n+1}, f\right) & \mapsto f\left(\Sigma_{i}\right)
\end{aligned}
$$

Cyclotomic loop stack

$$
\overline{\mathscr{L}}_{\mu} X:=\coprod_{r \geqslant 1} M_{a-r}^{\text {rep }}\left(\mathcal{B} \mu_{r}, X\right) / \mathcal{B} \mu_{r}
$$

Remark: $\mathbb{T}_{\mathscr{L}_{\mu} X,(x, \mathcal{G})} \simeq \Gamma\left(\mathcal{B} \mu_{r}, \mathbb{T}_{X, x} \mid \mathcal{G}\right) \simeq\left(\mathbb{T}_{X, x} \mid \mathcal{G}\right)^{\mu_{r}}$. Over \mathbb{Q}, trivial derived structure

Why care about stacky targets?

- X a stack, $\mathcal{P}_{0} \in \operatorname{Pic}(X)$ line bundle: stable locus $X^{\mathcal{P}_{0}-\text { st }}$ [Heinloth, Halpern-Leistner]
- $x \in X^{\mathcal{P}_{0}-\text { st }}$ iff $\mathrm{wt}_{\mathbb{G}_{\mathrm{m}}}\left(\lambda(0)^{* \mathcal{P}}\right)<0$ for any $\mathbb{A}^{1} / \mathbb{G}_{\mathrm{m}} \xrightarrow{\lambda} X$ such that $\lambda(1)=x$

Why care about stacky targets?

- X a stack, $\mathcal{P}_{0} \in \operatorname{Pic}(X)$ line bundle: stable locus $X^{\mathcal{P}_{0}}$-st [Heinloth, Halpern-Leistner]
$-x \in X^{\mathcal{P}_{0}-\text { st }}$ iff $\mathrm{wt}_{\mathbb{G}_{\mathrm{m}}}\left(\lambda(0)^{* \mathcal{P}}\right)<0$ for any $\mathbb{A}^{1} / \mathbb{G}_{\mathrm{m}} \xrightarrow{\lambda} X$ such that $\lambda(1)=x$
- $\varepsilon \in \mathbb{Q}_{>0}, \mathcal{P}=\mathcal{P}_{0} \otimes \varepsilon:$ quasi- $\mathcal{P}_{\text {-stable maps to }} X^{\mathcal{P} \text {-st }}=X^{\mathcal{P}_{0} \text {-st }}$ [Cheong-Ciocan-Fontanine-Kim-Maulik]
- Destabilising components traded for basepoints

Example: $\varepsilon>2$: usual stable maps

Why care about stacky targets?

- X a stack, $\mathcal{P}_{0} \in \operatorname{Pic}(X)$ line bundle: stable locus $X^{\mathcal{P}_{0}}$-st [Heinloth, Halpern-Leistner]

- $\varepsilon \in \mathbb{Q}_{>0}, \mathcal{P}=\mathcal{P}_{0} \otimes \varepsilon$: quasi- $\mathcal{P}_{\text {-stable maps to }} X^{\mathcal{P} \text {-st }}=X^{\mathcal{P}_{0} \text {-st }}$ [Cheong-Ciocan-Fontanine-Kim-Maulik]
- Destabilising components traded for basepoints

Example: $\varepsilon>2$: usual stable maps

Parameter space $\operatorname{Pic}(X) \otimes \mathbb{Q}_{>0}$ for the stability condition, with walls-and-chambers structure \Longrightarrow Wall-crossing formulae between the virtual classes, and the induced CohFTs

Constructing the derived moduli stack of stable maps

$\Pi_{g,\left(r_{1}, \cdots, r_{n}\right)}$ moduli stack of curves with marked gerbes of orders $r_{1}, \cdots, r_{n}[$ Olsson, Costello]

Constructing the derived moduli stack of stable maps

$\Pi_{g,\left(r_{1}, \cdots, r_{n}\right)}$ moduli stack of curves with marked gerbes of orders r_{1}, \cdots, r_{n} [Olsson, Costello]

Moduli of maps
$\bar{M}_{g, n}(X, \beta)$ open in $t_{0} \operatorname{Mar}_{/ \Pi_{g, n}}\left(\mathbb{C}_{g, n}, X \times \Pi_{g, n}\right)$
\Longrightarrow [Schürg-Toën-Vezzosi] Lifts uniquely to an open

$$
\mathbb{R} \bar{M}_{g, n}(X, \beta) \subset \operatorname{Mar} / m_{g, n}\left(\mathbb{C}_{g, n}, X \times \mathbb{m}_{g, n}\right)
$$

Proposition [Ciocan-Fontanine-Kapranov, Schürg-Toën-Vezzosi]

If X is smooth, $\mathbb{R} \bar{M}_{g, n}(X, \beta)$ is quasi-smooth $\left(\mathbb{L}_{\mathbb{R},} \bar{M}_{g, n}(X, \beta)\right.$ perfect Tor-amplitude in $\left.[-1,0]\right)$

Constructing the derived moduli stack of stable maps

$\Pi_{g,\left(r_{1}, \cdots, r_{n}\right)}$ moduli stack of curves with marked gerbes of orders r_{1}, \cdots, r_{n} [Olsson, Costello]
Remark: Universal curve $\mathbb{C}_{g,\left(r_{1}, \cdots, r_{n}\right)} \simeq \boldsymbol{\Pi}_{g,\left(r_{1}, \cdots, r_{n}, 1\right)} \rightarrow \boldsymbol{\Pi}_{g,\left(r_{1}, \cdots, r_{n}\right)}$
Moduli of maps
$\bar{M}_{g, n}(X, \beta)$ open in $t_{0} \operatorname{Mar}_{/ \Pi_{g, n}}\left(\mathbb{C}_{g, n}, X \times \Pi_{g, n}\right)$
\Longrightarrow [Schürg-Toën-Vezzosi] Lifts uniquely to an open

$$
\mathbb{R} \bar{M}_{g, n}(X, \beta) \subset \operatorname{Mor} / m_{g, n}\left(\mathbb{C}_{g, n}, X \times \Pi_{g, n}\right)
$$

Proposition [Ciocan-Fontanine-Kapranov, Schürg-Toën-Vezzosi]

If X is smooth, $\mathbb{R} \bar{M}_{g, n}(X, \beta)$ is quasi-smooth $\left(\mathbb{L}_{\mathbb{R},} \bar{M}_{g, n}(X, \beta)\right.$ perfect Tor-amplitude in $\left.[-1,0]\right)$

The operad of stacky curves

$\in \mathbb{M}_{0, \sum_{i}} k_{i},(\ldots)$

Gluing maps

$$
\prod_{g, n+1,\left(r_{1}, \ldots, r_{n}, s\right)} \underset{\mathcal{B}^{2} \mu_{s}}{\times} \prod_{h, p+1,\left(s, t_{1}, \ldots, t_{p}\right)} \rightarrow \prod_{g+h, n+p,\left(r_{1}, \ldots, r_{n}, t_{1}, \ldots, t_{p}\right)}
$$

where $\Pi_{g, n+1,\left(r_{1}, \ldots, r_{n}, s\right)} \xrightarrow{\left\ulcorner\Sigma_{n+1}\right\urcorner} \mathcal{B}^{2} \mu_{s}$ and $\Pi_{h, p+1,\left(s, t_{1}, \ldots, t_{p}\right)} \xrightarrow{\left.r_{-} T_{i}\right\urcorner} \mathcal{B}^{2} \mu_{s}$

The operad of stacky curves II

$\Pi_{g, n+1,\left(r_{1}, \ldots, r_{n}, s\right)} \underset{\mathcal{B}^{2} \mu_{s}}{\times} \mathrm{m}_{h, p+1,\left(s, t_{1}, \ldots, t_{p}\right)} \rightarrow \prod_{g+h, n+p,\left(r_{1}, \ldots, r_{n}, t_{1}, \ldots, t_{p}\right)}$ composition law for (modular) operad in stacks $\mathbb{\Pi}=\left(\Pi_{\star, \bullet+1}\right)$, with stack of colours $\mathcal{B}^{2} \mu:=\coprod_{r \geqslant 1} \mathcal{B}^{2} \mu_{r}$

Unitality

$\mathrm{m}_{0}(\emptyset ; r):=$ Mult $_{\mathrm{m}_{0}}(\emptyset ; r)=\mathcal{B} \mathcal{B} \mu_{r}$: the nullary morphism has automorphisms $\mathcal{B} \mu_{r}$

The operad of stacky curves II

$\prod_{g, n+1,\left(r_{1}, \ldots, r_{n}, s\right)} \underset{\mathcal{B}^{2} \mu_{s}}{\times} \boldsymbol{m}_{h, p+1,\left(s, t_{1}, \ldots, t_{p}\right)} \rightarrow \prod_{g+h, n+p,\left(r_{1}, \ldots, r_{n}, t_{1}, \ldots, t_{p}\right)}$ composition law for (modular) operad in stacks $\mathfrak{\Pi}=\left(\Pi_{\star, \bullet+1}\right)$, with stack of colours $\mathcal{B}^{2} \mu:=\coprod_{r \geqslant 1} \mathcal{B}^{2} \mu_{r}$

Unitality

$\mathrm{K}_{0}(\emptyset ; r):=$ Mult $_{\mathrm{n}_{0}}(\emptyset ; r)=\mathcal{B} \mathcal{B} \mu_{r}$: the nullary morphism has automorphisms $\mathcal{B} \mu_{r}$ \Longrightarrow Only the (schematic) colour 1 is unital: $\left(\Pi_{0} ; 1\right)$ hapaxunital operad

Extensions of $C \in \mathbb{R}_{0}\left(r_{1}, \ldots, r_{n} ; r_{n+1}\right)$

The operad of stacky curves II

$\boldsymbol{m}_{g, n+1,\left(r_{1}, \ldots, r_{n}, s\right)} \underset{\mathcal{B}^{2} \mu_{s}}{\times} \boldsymbol{m}_{h, p+1,\left(s, t_{1}, \ldots, t_{p}\right)} \rightarrow \boldsymbol{m}_{g+h, n+p,\left(r_{1}, \ldots, r_{n}, t_{1}, \ldots, t_{p}\right)}$ composition law for (modular) operad in stacks $\mathbb{\Pi}=\left(\Pi_{\star, \bullet+1}\right)$, with stack of colours $\mathcal{B}^{2} \mu:=\coprod_{r \geqslant 1} \mathcal{B}^{2} \mu_{r}$

Unitality

$\mathrm{M}_{0}(\emptyset ; r):=$ Mult $_{\mathrm{m}_{0}}(\emptyset ; r)=\mathcal{B} \mathcal{B} \mu_{r}$: the nullary morphism has automorphisms $\mathcal{B} \mu_{r}$ \Longrightarrow Only the (schematic) colour 1 is unital: $\left(\AA_{0} ; 1\right)$ hapaxunital operad

Extensions of $C \in \mathbb{R}_{0}\left(r_{1}, \ldots, r_{n} ; r_{n+1}\right)$

Geometry

$$
\begin{aligned}
\operatorname{Ext}(C) & \simeq \mathbb{C}_{0,\left(r_{1}, \ldots, r_{n}, r_{n+1}\right)}^{\prod_{0},\left(r_{1}, \ldots, r_{n}, r_{n+1}\right)} \\
& \simeq C
\end{aligned}
$$

$$
\text { in } \mathbb{R} \bar{M}_{0, n+1}(X, \beta)_{C}=\operatorname{Mar}(\operatorname{Ext}(C), X)
$$

Brane action for little disks

[Chas-Sullivan] Loop product: \mathscr{E}_{2}-algebra structure on $\mathrm{H}_{\bullet}(L X), L X=\operatorname{Mar}\left(S^{1}, X\right)$

Brane action for little disks

[Chas-Sullivan] Loop product: \mathscr{E}_{2}-algebra structure on $\mathrm{H}_{\bullet}(L X), L X=\operatorname{Mar}\left(S^{1}, X\right)$

$\ln \left(\mathscr{E}_{2}, *\right)$, for $\sigma \in \mathscr{E}_{2}(n): \operatorname{Ext}(\sigma) \simeq \bigvee^{n} S^{1} . \operatorname{In}$ particular, $\operatorname{Ext}(\mathrm{id}) \simeq S^{1}$

Brane actions for hapaxunital operads

Theorem [Toën, Mann-Robalo, K., Pourcelot]

Let $\left(0, O_{0}\right)$ be a hapaxunital ∞-operad in an $(\infty, 1)$-topos \mathcal{I}. There is a lax morphism of internal ($\infty, 2$)-operads
$0 \xrightarrow{\mathscr{B}_{6}} \operatorname{Caspan}\left(\mathrm{I}_{/-}\right)^{\amalg}$
$C \mapsto E x t\left(\mathrm{id}_{C}\right)$
inducing for each X

$$
\begin{aligned}
& \left(\mathcal{B _ { 6 , X }} \operatorname{Span}\left(\mathcal{I}_{/-}\right)^{\times}\right. \\
& C \mapsto \operatorname{Mar}\left(\operatorname{Ext}\left(\mathrm{id}_{C}\right), X\right)
\end{aligned}
$$

The action of $\sigma \in \mathcal{O}\left(C_{1}, \ldots, C_{n} ; C_{n+1}\right)$ is given by

$$
\underbrace{\operatorname{Ext}(\sigma)_{i=1}^{n}}_{\operatorname{Ext}\left(\mathrm{id}_{C_{i}}\right)} \operatorname{id}_{C_{n+1}})
$$

Sketch of construction [Mann-Robalo]

By descent: construct for $\mathfrak{T}=\infty-\mathfrak{G r p d}$

1. $0 \rightarrow$ Cospan $(\infty-\overleftarrow{G r p s})^{\amalg}$ of $(\infty, 2)$-operads
$\Longleftrightarrow \mathscr{C n v}(0) \rightarrow \operatorname{Cospan}(\infty-\mathfrak{H r p s})^{\amalg}$ of monoidal $(\infty, 2)$-categories

Sketch of construction [Mann-Robalo]

By descent: construct for $\mathfrak{T}=\infty-\mathfrak{G r p d}$

1. $0 \rightarrow$ Cospan $(\infty-\overleftarrow{G r p d})^{\amalg}$ of $(\infty, 2)$-operads
$\Longleftrightarrow \operatorname{Env}(0) \rightarrow \operatorname{Cospan}(\infty-\mathfrak{G r p s})^{\amalg}$ of monoidal $(\infty, 2)$-categories
2. $\mathscr{E n v}(0) \rightarrow \operatorname{Cospan}(\infty-\mathfrak{G r p s})^{\amalg} \Longleftrightarrow \operatorname{Tw}(\mathscr{E} n v(0)) \rightarrow \infty-\mathfrak{G r p v ^ { \circ }}{ }^{\mathrm{op} \amalg}$ [Barwick]

Sketch of construction [Mann-Robalo]

By descent: construct for $\mathfrak{T}=\infty-\mathfrak{G r p d}$

1. $0 \rightarrow$ Cospan $(\infty-\mathscr{G r p s})^{\amalg}$ of $(\infty, 2)$-operads
$\Longleftrightarrow \operatorname{Env}(0) \rightarrow \operatorname{Cospan}(\infty-\mathfrak{G r p s})^{\amalg}$ of monoidal $(\infty, 2)$-categories
2. $\mathscr{E n v}(0) \rightarrow \operatorname{Cospan}(\infty-\mathfrak{G r p s})^{\amalg} \Longleftrightarrow \operatorname{Iw}(\mathscr{E} n v(0)) \rightarrow \infty-\operatorname{Crps}^{\mathrm{op} \amalg}$ [Barwick]
3. $\mathfrak{I w}(\mathscr{E} n v(0)) \rightarrow \infty-\operatorname{Grps}^{\mathrm{op} \amalg}$
\Longleftrightarrow discrete cocartesian fibration of $(\infty, 1)$-operads $\widetilde{\mathfrak{B}(0)} \rightarrow \mathcal{I} w(\mathscr{G} n v(0))^{\text {op }}$

Sketch of construction [Mann-Robalo]

By descent: construct for $\mathfrak{T}=\infty-\mathfrak{G r p d}$

1. $0 \rightarrow$ Cospan $(\infty-\overleftarrow{G r p s})^{\amalg}$ of $(\infty, 2)$-operads
$\Longleftrightarrow \operatorname{Env}(0) \rightarrow \operatorname{Cospan}(\infty-\mathfrak{G r p s})^{\amalg}$ of monoidal $(\infty, 2)$-categories
2. $\operatorname{Env}(0) \rightarrow \operatorname{Cospan}(\infty-\mathfrak{G r p s})^{\amalg} \Longleftrightarrow \operatorname{Iw}(\mathscr{E} n v(0)) \rightarrow \infty-\operatorname{Crps}^{\mathrm{op} \amalg}$ [Barwick]
3. $\mathfrak{I w}(\mathscr{E n v}(0)) \rightarrow \infty-\operatorname{Crps}^{\mathrm{op} \amalg}$
\Longleftrightarrow discrete cocartesian fibration of $(\infty, 1)$-operads $\widetilde{\mathfrak{B}(0)} \rightarrow \mathcal{T} w(\mathscr{E} n v(0))^{\text {op }}$
4. $\widetilde{\mathfrak{B}(\mathbb{O})} \rightarrow \mathfrak{I} w(\mathscr{C} n v(0))$ encoded by discrete cartesian fibration of $(\infty, 1)$-categories $\mathfrak{B}(0) \rightarrow \operatorname{Env}(\operatorname{Iw}(\mathscr{B} n v(0)))$ with weak cartesian structure [Lurie].

Recovering the Gromov-Witten action

Corollary

There is a lax morphism of $(\infty, 2)$-operads in $\mathfrak{i S t} \quad \bar{M}_{0} \xrightarrow{\text { GWW }} \operatorname{Span}(\mathfrak{i S t} /-)^{\times}$

$$
* \mapsto \overline{\mathscr{L}}_{\mu} X^{\mathcal{P}-\mathrm{st}}
$$

Recovering the Gromov-Witten action

Corollary

There is a lax morphism of $(\infty, 2)$-operads in $\mathfrak{i S t} \quad \bar{M}_{0} \xrightarrow{\mathscr{C W}} \operatorname{Span}(\grave{15 t} /-)^{\times}$

$$
* \mapsto \overline{\mathscr{L}}_{\mu} X^{\mathcal{P} \text {-st }}
$$

Proof.
$\mathrm{m}_{0} \xrightarrow{\mathscr{S}_{\mathrm{m}, x}} \operatorname{Span}(\mathrm{iSt} /-)^{x}$

Construct GWW as oplax extension:

$$
\mathscr{G} W=\text { Opex }_{\text {Stab }} \mathscr{B} \mathfrak{r}, x
$$

Recovering the Gromov-Witten action

Corollary

There is a lax morphism of $(\infty, 2)$-operads in $\mathfrak{i S t} \quad \bar{M}_{0} \xrightarrow{\text { GGW }} \operatorname{Span}(i S 5 t /-)^{\times}$

$$
* \mapsto \overline{\mathscr{L}}_{\mu} X^{\mathcal{P}-\mathrm{st}}
$$

Proof.

$$
\mathscr{G W N}(*)=\underset{\operatorname{Stab}(r) \rightarrow *}{\underset{\mathrm{colim}}{\operatorname{colim}}} \mathscr{B}, X(r)=\underset{r \in \mathrm{~N}+1}{\underset{\mathrm{~B}\left(\mathcal{B} \mu_{r}\right)}{\operatorname{colim}}} \operatorname{Mar}\left(\mathscr{B}_{\mathrm{M}(}(r), X\right)
$$

Recovering the Gromov-Witten action

Corollary

There is a lax morphism of $(\infty, 2)$-operads in $\mathfrak{i S t} \quad \bar{M}_{0} \xrightarrow{\mathscr{G W}} \operatorname{Span}(\mathfrak{i S t} /-)^{\times}$

$$
* \mapsto \overline{\mathscr{L}}_{\mu} X^{\mathcal{P}-s t}
$$

Proof.

$$
\mathscr{S W N}(*)=\underset{\operatorname{Stab}(r) \rightarrow *}{\underset{\operatorname{colim}}{\operatorname{colim}}} \mathscr{B}, X(r)=\coprod_{r \in \mathbb{N}+1_{\mathcal{B}}\left(\mathcal{B}_{r}\right)}^{\operatorname{colim}} \operatorname{Mar}\left(\mathscr{B}_{\mathfrak{n}}(r), X\right)
$$

Remark: $\mathscr{B}_{\mathbb{R}(}(r)=\operatorname{Ext}\left(\mathrm{id}_{r}\right)=\boldsymbol{m}_{0,(r, r, 1)} \underset{\boldsymbol{m}_{0,(r, r)}}{\times}\left\{\mathrm{id}_{r}\right\}=* \underset{\mathcal{B}^{2} \mu_{r}}{\times} *=\Omega \mathcal{B}^{2} \mu_{r}=\mathcal{B} \mu_{r}$

Recovering the Gromov-Witten action

Corollary

There is a lax morphism of $(\infty, 2)$-operads in $\mathfrak{i S t}$

$$
\begin{aligned}
& \bar{M}_{0} \xrightarrow{\mathscr{G}} \operatorname{Span}(\grave{1 S t} /-)^{\times} \\
& \quad * \mapsto \overline{\mathscr{L}}_{\mu} X^{\mathcal{P}-s t}
\end{aligned}
$$

Proof.

$$
\operatorname{GGN}(*) \simeq \coprod_{r \in \mathbb{N}+1} \underset{\mathcal{B}\left(\mathcal{B} \mu_{r}\right)}{\operatorname{colim}} \operatorname{Mor}\left(\mathcal{B} \mu_{r}, X\right)
$$

Remark: $\mathscr{B}_{\mathfrak{m} \mathfrak{I}}(r)=\operatorname{Ext}\left(\mathrm{id}_{r}\right)=\mathbb{m}_{0,(r, r, 1)} \underset{\mathrm{m}_{0,(r, r)}}{\times}\left\{\mathrm{id}_{r}\right\}=* \underset{\mathcal{B}^{2} \mu_{r}}{\times} *=\Omega \mathcal{B}^{2} \mu_{r}=\mathcal{B} \mu_{r}$

Recovering the Gromov-Witten action

Corollary

There is a lax morphism of ($\infty, 2$)-operads in $\mathfrak{i S t}$

$$
\begin{gathered}
\bar{M}_{0} \xrightarrow{\mathscr{Y W}} \operatorname{Span}(\mathfrak{S I t} /-)^{\times} \\
* \mapsto \overline{\mathscr{L}}_{\mu} X^{\mathcal{P}-\mathrm{st}}
\end{gathered}
$$

Proof.

$$
\mathscr{G W}(*) \simeq \coprod_{r \in \mathbb{N}+1} \underset{\mathcal{B}\left(\mathcal{B} \mu_{r}\right)}{\operatorname{colim}} \operatorname{Mar}\left(\mathcal{B} \mu_{r}, X\right)=\coprod_{r \in \mathbb{N}+1} \operatorname{Mar}\left(\mathcal{B} \mu_{r}, X\right) / \mathcal{B} \mu_{r}=: \overline{\mathscr{L}}_{\mu} X
$$

Remark: $\mathscr{B}_{\mathbb{M}}(r)=\operatorname{Ext}\left(\mathrm{id}_{r}\right)=\boldsymbol{m}_{0,(r, r, 1)} \underset{\mathbb{m}_{0,(r, r)}}{\times}\left\{\mathrm{id}_{r}\right\}=* \underset{\mathcal{B}^{2} \mu_{r}}{\times} *=\Omega \mathcal{B}^{2} \mu_{r}=\mathcal{B} \mu_{r}$

