Brane actions for operads of (stacky) curves

David Kern

Institut Montpelliérain Alexandre Grothendieck

1st March 2023 Homotopical Methods in Algebraic Geometry at IHP

David KERN (IMAG)

Brane actions for operads of (stacky) curves

Lemma [Schürg–Toën–Vezzosi, Mann–Robalo] $\left[\bigcirc_{\overline{\mathcal{M}}_{g,n+1}(X)}^{\text{vir}} \right]$ "is" the structure sheaf of derived thickening $\mathbb{R}\overline{\mathcal{M}}_{g,n+1}(X)$

Lemma [Schürg–Toën–Vezzosi, Mann–Robalo] $\left[\bigcirc_{\overline{\mathcal{M}}_{g,n+1}(X)}^{\text{vir}} \right]$ "is" the structure sheaf of derived thickening $\mathbb{R}\overline{\mathcal{M}}_{g,n+1}(X)$

Lemma [Schürg–Toën–Vezzosi, Mann–Robalo] $\left[\mathcal{O}_{\overline{\mathcal{M}}_{g,n+1}(X)}^{\text{vir}}\right]$ "is" the structure sheaf of derived thickening $\mathbb{R}\overline{\mathcal{M}}_{g,n+1}(X)$

Idea: Algebra (in spans) over the operad $\overline{\mathcal{M}}_{0,\bullet+1}$

David KERN (IMAG)

Brane actions for operads of (stacky) curves

Case of a stacky target

For $\overline{\mathcal{M}}_{g,n+1}(X)$ to be proper: need stacky curves [Abramovich–Graber–Vistoli] At a marking locally of the form $\operatorname{Spec}(\kappa[x])/\mu_r$

At a node Spec $(\kappa[x,y]/\langle xy \rangle)/\mu_s$ with *balanced* action $(x,y) \mapsto (\zeta \cdot x, \zeta^{-1} \cdot y)$

Evaluation maps

$$ev_i: \mathbb{R}\overline{\mathcal{M}}_{g,n+1}(X) \to \\ (C, \Sigma_1, \dots, \Sigma_{n+1}, f) \mapsto f(\Sigma_i)$$

Case of a stacky target

For $\overline{\mathcal{M}}_{g,n+1}(X)$ to be proper: need stacky curves [Abramovich–Graber–Vistoli] At a marking locally of the form $\operatorname{Spec}(\kappa[x])/\mu_r$

At a node Spec $(\kappa[x,y]/\langle xy \rangle)/\mu_s$ with *balanced* action $(x,y) \mapsto (\zeta \cdot x, \zeta^{-1} \cdot y)$

Evaluation maps

$$ev_i: \mathbb{R}\overline{\mathcal{M}}_{g,n+1}(X) \to \{\mu_{r_i}\text{-gerbes in } X\}$$
$$(C, \Sigma_1, \dots, \Sigma_{n+1}, f) \mapsto f(\Sigma_i)$$

Cyclotomic loop stack

$$\overline{\mathscr{L}}_{\mu}X \coloneqq \coprod_{r \geqslant 1} \mathscr{M}or^{\operatorname{rep}}(\mathfrak{B}\mu_r, X) / \mathfrak{B}\mu_r$$

Case of a stacky target

For $\overline{\mathcal{M}}_{g,n+1}(X)$ to be proper: need stacky curves [Abramovich–Graber–Vistoli] At a marking locally of the form $\operatorname{Spec}(\kappa[x])/\mu_r$

At a node Spec $(\kappa[x,y]/\langle xy \rangle)/\mu_s$ with *balanced* action $(x,y) \mapsto (\zeta \cdot x, \zeta^{-1} \cdot y)$

Evaluation maps

$$ev_i: \mathbb{R}\overline{\mathcal{M}}_{g,n+1}(X) \to \{\mu_{r_i}\text{-gerbes in } X\}$$
$$(C, \Sigma_1, \dots, \Sigma_{n+1}, f) \mapsto f(\Sigma_i)$$

Cyclotomic loop stack

$$\overline{\mathscr{L}}_{\mu}X \coloneqq \coprod_{r \geqslant 1} \mathscr{M}or^{\operatorname{rep}}(\mathfrak{B}\mu_r, X) / \mathfrak{B}\mu_r$$

Remark: $\mathbb{T}_{\mathscr{L}_{\mu}X,(x,\mathfrak{G})} \simeq \Gamma(\mathscr{B}\mu_{r},\mathbb{T}_{X,x}|_{\mathfrak{G}}) \simeq (\mathbb{T}_{X,x}|_{\mathfrak{G}})^{\mu_{r}}$. Over \mathbb{Q} , trivial derived structure

Why care about stacky targets?

X a stack, P₀ ∈ Pic(X) line bundle: stable locus X^{P₀-st} [Heinloth, Halpern-Leistner]
 x ∈ X^{P₀-st} iff wt_{Gm}(λ(0)*P) < 0 for any A¹/Gm ^λ→ X such that λ(1) = x

Why care about stacky targets?

► X a stack, $\mathcal{P}_0 \in \operatorname{Pic}(X)$ line bundle: stable locus $X^{\mathcal{P}_0 - st}$ [Heinloth, Halpern-Leistner] ► $x \in X^{\mathcal{P}_0 - st}$ iff wt_{G-} $(\lambda(0)^*\mathcal{P}) < 0$ for any $\mathbb{A}^1/\mathbb{G}_m \xrightarrow{\lambda} X$ such that $\lambda(1) = x$

► $\varepsilon \in \mathbb{Q}_{>0}$, $\mathcal{P} = \mathcal{P}_0 \otimes \varepsilon$: quasi- \mathcal{P} -stable maps to $X^{\mathcal{P}$ -st} = X^{\mathcal{P}_0-st [Cheong-Ciocan-Fontanine-Kim-Maulik]

Destabilising components traded for basepoints

Example: $\varepsilon > 2$: usual stable maps

Why care about stacky targets?

X a stack, P₀ ∈ Pic(X) line bundle: stable locus X^{P₀-st} [Heinloth, Halpern-Leistner]
 x ∈ X^{P₀-st} iff wt_{Gm} (λ(0)*P) < 0 for any A¹/Gm ^λ→ X such that λ(1) = x

Parameter space $Pic(X) \otimes \mathbb{Q}_{>0}$ for the stability condition, with walls-and-chambers structure

 \implies Wall-crossing formulae between the virtual classes, and the induced CohFTs

Constructing the derived moduli stack of stable maps

 $\mathfrak{M}_{g,(r_1,\cdots,r_n)}$ moduli stack of curves with marked gerbes of orders r_1,\cdots,r_n [Olsson, Costello]

4/10

Constructing the derived moduli stack of stable maps

 $\mathfrak{M}_{g,(r_1,\cdots,r_n)}$ moduli stack of curves with marked gerbes of orders r_1,\cdots,r_n [Olsson, Costello]

$$\begin{split} & \text{Moduli of maps} \\ & \overline{\mathcal{M}}_{g,n}(X,\beta) \text{ open in } t_0 \mathcal{M}or_{/\mathfrak{M}_{g,n}}(\mathfrak{C}_{g,n},X\times\mathfrak{M}_{g,n}) \\ & \Longrightarrow [\text{Schürg-Toën-Vezzosi] Lifts uniquely to an open} \\ & \mathbb{R}\overline{\mathcal{M}}_{g,n}(X,\beta) \subset \mathcal{M}or_{/\mathfrak{M}_{g,n}}(\mathfrak{C}_{g,n},X\times\mathfrak{M}_{g,n}) \end{split}$$

Proposition [Ciocan-Fontanine–Kapranov, Schürg–Toën–Vezzosi] If X is smooth, $\mathbb{R}\overline{\mathcal{M}}_{g,n}(X,\beta)$ is quasi-smooth ($\mathbb{L}_{\mathbb{R}\overline{\mathcal{M}}_{g,n}(X,\beta)}$ perfect Tor-amplitude in [-1,0])

4/10

Constructing the derived moduli stack of stable maps

 $\mathfrak{M}_{g,(r_1,\cdots,r_n)}$ moduli stack of curves with marked gerbes of orders r_1,\cdots,r_n [Olsson, Costello] Remark: Universal curve $\mathfrak{C}_{g,(r_1,\cdots,r_n)} \simeq \mathfrak{M}_{g,(r_1,\cdots,r_n,1)} \to \mathfrak{M}_{g,(r_1,\cdots,r_n)}$

Moduli of maps

$$\begin{split} \overline{\mathcal{M}}_{g,n}(X,\beta) \text{ open in } t_0 \mathcal{M}or_{/\mathfrak{M}_{g,n}}(\mathfrak{C}_{g,n},X\times\mathfrak{M}_{g,n}) \\ \Longrightarrow [\text{Schürg-Toën-Vezzosi}] \text{ Lifts uniquely to an open} \\ \mathbb{R}\overline{\mathcal{M}}_{g,n}(X,\beta) \subset \mathcal{M}or_{/\mathfrak{M}_{g,n}}(\mathfrak{C}_{g,n},X\times\mathfrak{M}_{g,n}) \end{split}$$

Proposition [Ciocan-Fontanine–Kapranov, Schürg–Toën–Vezzosi] If X is smooth, $\mathbb{R}\overline{\mathcal{M}}_{g,n}(X,\beta)$ is quasi-smooth ($\mathbb{L}_{\mathbb{R}\overline{\mathcal{M}}_{g,n}(X,\beta)}$ perfect Tor-amplitude in [-1,0])

The operad of stacky curves

Gluing maps

$$\mathfrak{M}_{g,n+1,(r_1,\ldots,r_n,s)} \underset{\mathcal{B}^2 \mu_s}{\times} \mathfrak{M}_{h,p+1,(s,t_1,\ldots,t_p)} \to \mathfrak{M}_{g+h,n+p,(r_1,\ldots,r_n,t_1,\ldots,t_p)}$$

where
$$\mathfrak{M}_{g,n+1,(r_1,\ldots,r_n,s)} \xrightarrow{\Gamma \Sigma_{n+1}} \mathcal{B}^2 \mu_s$$
 and $\mathfrak{M}_{h,p+1,(s,t_1,\ldots,t_p)} \xrightarrow{\Gamma - T_i} \mathcal{B}^2 \mu_s$

The operad of stacky curves II

$$\begin{split} \mathfrak{M}_{g,n+1,(r_1,\ldots,r_n,s)} & \underset{\mathbb{B}^2 \, \mu_s}{\times} \mathfrak{M}_{h,p+1,(s,t_1,\ldots,t_p)} \to \mathfrak{M}_{g+h,n+p,(r_1,\ldots,r_n,t_1,\ldots,t_p)} \text{ composition law for} \\ \text{(modular) operad in stacks } \mathfrak{M} = (\mathfrak{M}_{\star,\bullet+1}) \text{, with stack of colours } \mathbb{B}^2 \, \mu \coloneqq \coprod_{r \geqslant 1} \mathbb{B}^2 \, \mu_r \end{split}$$

Unitality

 $\mathfrak{M}_{0}(\emptyset; r) \coloneqq \mathsf{Mult}_{\mathfrak{M}_{0}}(\emptyset; r) = \mathfrak{BB}\mu_{r}$: the nullary morphism has automorphisms $\mathfrak{B}\mu_{r}$

The operad of stacky curves II

$$\begin{split} \mathfrak{M}_{g,n+1,(r_1,\ldots,r_n,s)} & \underset{\mathbb{B}^2 \, \mu_s}{\times} \mathfrak{M}_{h,p+1,(s,t_1,\ldots,t_p)} \to \mathfrak{M}_{g+h,n+p,(r_1,\ldots,r_n,t_1,\ldots,t_p)} \text{ composition law for} \\ \text{(modular) operad in stacks } \mathfrak{M} = (\mathfrak{M}_{\star,\bullet+1}) \text{, with stack of colours } \mathbb{B}^2 \, \mu \coloneqq \coprod_{r \geqslant 1} \mathbb{B}^2 \, \mu_r \end{split}$$

Unitality

 $\mathfrak{M}_{0}(\emptyset; r) \coloneqq \operatorname{Mult}_{\mathfrak{M}_{0}}(\emptyset; r) = \mathfrak{B} \mathfrak{B} \mu_{r}: \text{ the nullary morphism has automorphisms } \mathfrak{B} \mu_{r}$ $\longrightarrow \text{ Only the (schematic) colour 1 is unital: } (\mathfrak{M}_{0}; 1) \text{ hapaxunital operad}$

Extensions of
$$C \in \mathfrak{M}_0(r_1, \dots, r_n; r_{n+1})$$

$$\begin{array}{c} \mathsf{Ext}(C) \longrightarrow \mathfrak{M}_0(r_1, \dots, r_n, 1; r_{n+1}) \\ \downarrow & \downarrow \\ * \xrightarrow{} & - & \Gamma_C \neg \end{array}$$

The operad of stacky curves II

$$\begin{split} \mathfrak{M}_{g,n+1,(r_1,\ldots,r_n,s)} & \underset{\mathbb{B}^2 \, \mu_s}{\times} \mathfrak{M}_{h,p+1,(s,t_1,\ldots,t_p)} \to \mathfrak{M}_{g+h,n+p,(r_1,\ldots,r_n,t_1,\ldots,t_p)} \text{ composition law for} \\ \text{(modular) operad in stacks } \mathfrak{M} = (\mathfrak{M}_{\star,\bullet+1}) \text{, with stack of colours } \mathbb{B}^2 \, \mu \coloneqq \coprod_{r \geqslant 1} \mathbb{B}^2 \, \mu_r \end{split}$$

Unitality

 $\mathfrak{M}_{0}(\emptyset; r) \coloneqq \operatorname{Mult}_{\mathfrak{M}_{0}}(\emptyset; r) = \mathfrak{B} \mathfrak{B} \mu_{r}: \text{ the nullary morphism has automorphisms } \mathfrak{B} \mu_{r}$ $\longrightarrow \text{ Only the (schematic) colour 1 is unital: } (\mathfrak{M}_{0}; 1) \text{ hapaxunital operad}$

Extensions of
$$C \in \mathfrak{M}_0(r_1, \ldots, r_n; r_{n+1})$$

$$\begin{array}{ccc} \mathsf{Ext}(C) & \longrightarrow & \mathfrak{M}_0(r_1, \dots, r_n, 1; r_{n+1}) \\ & \downarrow & & \downarrow \\ & \ast & & & \downarrow \\ & \ast & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & &$$

Ceometry

$$Ext(C) \simeq \mathfrak{C}_{0,(r_1,\ldots,r_n,r_{n+1})} \underset{\mathfrak{M}_{0,(r_1,\ldots,r_n,r_{n+1})}}{\times} \{C\}$$

$$\simeq C$$

$$n \mathbb{R}\overline{\mathcal{M}}_{0,n+1}(X,\beta) = \mathcal{M}or(Ext(C),X)$$

Brane action for little disks

[Chas–Sullivan] Loop product: \mathscr{C}_2 -algebra structure on $H_{\bullet}(LX)$, $LX = \mathcal{M}or(S^1, X)$

Brane action for little disks

[Chas–Sullivan] Loop product: \mathscr{C}_2 -algebra structure on $H_{\bullet}(LX)$, $LX = \mathcal{M}or(S^1, X)$

In $(\mathscr{C}_2, *)$, for $\sigma \in \mathscr{C}_2(n)$: Ext $(\sigma) \simeq \bigvee^n S^1$. In particular, Ext $(id) \simeq S^1$

Brane actions for hapaxunital operads

Theorem [Toën, Mann–Robalo, K., Pourcelot]

Let (\mathfrak{G}, O_0) be a hapaxunital ∞ -operad in an $(\infty, 1)$ -topos \mathfrak{T} . There is a lax morphism of internal $(\infty, 2)$ -operads

$$\begin{array}{l} & \stackrel{\mathfrak{B}_{0}}{\longrightarrow} \mathscr{C}ospan(\mathfrak{T}_{/-})^{\amalg} \\ & \mathsf{C} \mapsto \mathsf{Ext}(\mathsf{id}_{\mathcal{C}}) \end{array} & \qquad \mathsf{inducing for each } X & \begin{array}{c} & \stackrel{\mathfrak{G}}{\xrightarrow{\mathfrak{B}_{0}, X}} \mathscr{S}pan(\mathfrak{T}_{/-})^{\times} \\ & & \mathcal{C} \mapsto \mathscr{M}or(\mathsf{Ext}(\mathsf{id}_{\mathcal{C}}), X) \end{array} \end{array}$$

The action of $\sigma \in \mathfrak{O}(C_1, \ldots, C_n; C_{n+1})$ is given by

$$\underset{i=1}{\overset{(\sigma \circ_i -)_{i=1}^n}{\underset{i=1}{\overset{(\sigma \circ_i -)_{i=1}{\overset{(\sigma \circ_i -)_{i=1}{\underset{i=1}{\overset{(\sigma \circ_i -)}{\underset{i=1}{\overset{(\sigma \circ_i -)_{i=1}{\underset{i=1}{\overset{(\sigma \circ_i -)}{\underset{i=1}{\underset{i=1}{\overset{(\sigma \circ_i -)_{i=1}{\underset{i=1}{\overset{(\sigma \circ_i -)}{\underset{i=1}{\underset{i=1}{\overset{(\sigma \circ_i -)}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{(\sigma \circ_i -)}{\underset{i=1}{\underset{i=1}{\overset{(\sigma \circ_i -)}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{(\sigma \circ_i -)}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atop(\sigma \circ_i -)}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atop(\sigma \circ_i -)}{\underset{i=1}{\underset{i=1}{\atop(\sigma \circ_i -)}{\underset{i=1}{\underset{i=1}{\atop(\sigma \circ_i -)}{\underset{i=1}{\underset{i=1}{\atop(\sigma \circ_i -}{\underset{i=1}{\atop(\sigma \circ_i -}{\underset{i=1}{\underset{i=1}{\atop(\sigma \circ_i -}{\underset{i=1}{\atop(\sigma \circ_i -}{\underset{i=1}{\atop(\sigma \circ_i -}{\underset{i=1}{\atop(\sigma \circ_i -}{\underset{i=1}{\underset{i=1}{\atop(\sigma \circ_i -}{\underset{i=1}{\atop(\sigma \circ_i -}{\atop(\sigma \circ_i -}{\underset{i=1}{\atop(\sigma \circ_i$$

By descent: construct for $\ensuremath{\mathfrak{T}} = \infty \mbox{-}\ensuremath{\mathfrak{Grp}} \mbox{\mathfrak{d}}$

1.
$$\mathfrak{G} \rightarrow \mathfrak{C}ospan(\infty-\mathfrak{G}r\mathfrak{p}\mathfrak{d})^{\amalg}$$
 of $(\infty,2)$ -operads
 $\iff \mathfrak{C}nv(\mathfrak{G}) \rightarrow \mathfrak{C}ospan(\infty-\mathfrak{G}r\mathfrak{p}\mathfrak{d})^{\amalg}$ of monoidal $(\infty,2)$ -categories

9/10

By descent: construct for $\ensuremath{\mathfrak{T}} = \infty \mbox{-} \ensuremath{\mathfrak{Grp}} \mbox{\mathfrak{b}}$

1.
$$\mathfrak{O} \to \mathcal{C}ospan(\infty-\mathfrak{G}r\mathfrak{p}\mathfrak{d})^{II}$$
 of $(\infty,2)$ -operads
 $\iff \mathcal{C}nv(\mathfrak{O}) \to \mathcal{C}ospan(\infty-\mathfrak{G}r\mathfrak{p}\mathfrak{d})^{II}$ of monoidal $(\infty,2)$ -categories

2. $\operatorname{Cnv}(\mathbb{G}) \to \operatorname{Cospan}(\infty - \operatorname{Grpd})^{\mathrm{II}} \iff \operatorname{Tw}(\operatorname{Cnv}(\mathbb{G})) \to \infty - \operatorname{Grpd}^{\mathrm{op II}}[\operatorname{Barwick}]$

By descent: construct for $\ensuremath{\mathfrak{T}} = \infty \mbox{-}\ensuremath{\mathfrak{Grp}} \mbox{\mathfrak{b}}$

1.
$$\mathfrak{G} \to \mathcal{C}ospan(\infty-\mathfrak{G}r\mathfrak{p}\mathfrak{d})^{II}$$
 of $(\infty,2)$ -operads
 $\iff \mathcal{C}nv(\mathfrak{G}) \to \mathcal{C}ospan(\infty-\mathfrak{G}r\mathfrak{p}\mathfrak{d})^{II}$ of monoidal $(\infty,2)$ -categories

2.
$$\operatorname{Cnv}(\mathbb{G}) \to \operatorname{Cospan}(\infty \operatorname{-Grpd})^{\coprod} \iff \operatorname{Tw}(\operatorname{Cnv}(\mathbb{G})) \to \infty \operatorname{-Grpd}^{\operatorname{op}\amalg}[\operatorname{Barwick}]$$

3. $\operatorname{Tw}(\operatorname{\mathscr{E}nv}(\mathfrak{G})) \to \infty - \operatorname{\operatorname{Grp}}^{\operatorname{op} \amalg}$

 $\iff {\sf discrete \ cocartesian \ fibration \ of \ (\infty,1)-operads \ \widetilde{\mathfrak{B}(\mathbb{G})} \to \mathfrak{Tw}(\mathscr{C}\!\mathit{nv}(\mathbb{G}))^{\sf op}$

9/10

By descent: construct for $\ensuremath{\mathfrak{T}} = \infty \mbox{-}\ensuremath{\mathfrak{Grp}} \mbox{\mathfrak{b}}$

1.
$$\mathfrak{G} \to \mathcal{C}ospan(\infty-\mathfrak{G}r\mathfrak{p}\mathfrak{d})^{II}$$
 of $(\infty,2)$ -operads
 $\iff \mathcal{C}nv(\mathfrak{G}) \to \mathcal{C}ospan(\infty-\mathfrak{G}r\mathfrak{p}\mathfrak{d})^{II}$ of monoidal $(\infty,2)$ -categories

2.
$$\operatorname{Cnv}(\mathbb{G}) \to \operatorname{Cospan}(\infty \operatorname{-Grpd})^{\amalg} \iff \operatorname{Tw}(\operatorname{Cnv}(\mathbb{G})) \to \infty \operatorname{-Grpd}^{\operatorname{op}\amalg}[\operatorname{Barwick}]$$

- 3. $\Upsilon w(\mathscr{E}nv(\mathfrak{G})) \to \infty\text{-}\mathfrak{Grpb}^{\mathsf{opII}}$ \iff discrete cocartesian fibration of $(\infty, 1)$ -operads $\widetilde{\mathfrak{B}(\mathfrak{G})} \to \Upsilon w(\mathscr{E}nv(\mathfrak{G}))^{\mathsf{op}}$
- 4. $\widetilde{\mathfrak{B}(\mathbb{G})} \to \mathfrak{Tw}(\mathfrak{Env}(\mathbb{G}))$ encoded by discrete cartesian fibration of $(\infty, 1)$ -categories $\mathfrak{B}(\mathbb{G}) \to \mathfrak{Env}(\mathfrak{Tw}(\mathfrak{Env}(\mathbb{G})))$ with weak cartesian structure [Lurie].

9/10

Corollary

There is a lax morphism of $(\infty, 2)$ -operads in $\mathfrak{dSt} \longrightarrow \mathfrak{Span}(\mathfrak{dSt}_{/-})^{\times}$ $* \mapsto \overline{\mathcal{T}}_{\mu} X^{\mathcal{P}-st}$

Corollary $\overline{\mathcal{M}}_{0} \xrightarrow{\mathfrak{SW}} Span(\mathfrak{dSt}_{/-})^{\times}$ There is a lax morphism of $(\infty, 2)$ -operads in \mathfrak{dSt} $*\mapsto \overline{\mathscr{L}}_{\mathsf{H}} X^{\mathcal{P}-\mathsf{st}}$ Proof. $\xrightarrow{\mathfrak{B}_{\mathfrak{M},X}} \mathfrak{Span}(\mathfrak{dSt}_{/-})^{\times}$ \mathfrak{m}_{0} Construct *GW* as oplax extension: ----GW $\mathscr{GW} = \operatorname{Opex}_{\mathsf{Stab}} \mathscr{B}_{\mathfrak{M}, X}$ Stab $\frac{1}{\mathcal{M}_0}$

Corollary

There is a lax morphism of
$$(\infty, 2)$$
-operads in $\mathfrak{dSt} \longrightarrow \mathfrak{Span}(\mathfrak{dSt}_{/-})^{\times} * \mapsto \overline{\mathscr{T}}_{\mu} X^{\mathcal{P}\text{-st}}$

Proof.

$$\mathscr{GW}(*) = \underbrace{\operatorname{colim}}_{\operatorname{Stab}(r) \to *} \mathscr{B}_{\mathfrak{M}, X}(r) = \underbrace{\operatorname{colim}}_{\substack{I \\ I \\ r \in \mathbb{N}+1}} \mathscr{M}or(\mathscr{B}_{\mathfrak{M}}(r), X)$$

Corollary

There is a lax morphism of $(\infty,2)\text{-operads}$ in \mathfrak{dSt}

$$\overline{\mathcal{M}}_{0} \xrightarrow{\mathscr{GW}} Span(\mathfrak{dSt}_{/-})^{\times} \\ * \mapsto \overline{\mathcal{T}}_{\mu} X^{\mathcal{P}\text{-st}}$$

Proof.

$$\mathscr{GW}(*) = \underbrace{\operatorname{colim}}_{\operatorname{Stab}(r) \to *} \mathscr{B}_{\mathfrak{m},X}(r) = \coprod_{r \in \mathbb{N}+1} \underbrace{\operatorname{colim}}_{\mathscr{B}(\mathfrak{B}\,\mu_r)} \mathscr{M}or(\mathscr{B}_{\mathfrak{m}}(r),X)$$

Remark:
$$\mathfrak{B}_{\mathfrak{M}}(r) = \operatorname{Ext}(\operatorname{id}_r) = \mathfrak{M}_{0,(r,r,1)} \underset{\mathfrak{M}_{0,(r,r)}}{\times} \{\operatorname{id}_r\} = \underset{\mathfrak{B}^2 \mu_r}{\times} \ast = \Omega \mathfrak{B}^2 \mu_r = \mathfrak{B} \mu_r$$

Corollary

There is a lax morphism of $(\infty, 2)$ -operads in $\mathfrak{dSt} \longrightarrow \mathfrak{Span}(\mathfrak{dSt}_{/-})^{\times} * \mapsto \overline{\mathcal{T}}_{\mu} X^{\mathfrak{P}-\mathrm{st}}$

Proof.

R

$$\mathscr{GW}(*) \simeq \coprod_{r \in \mathbb{N}+1} \underbrace{\operatorname{colim}}_{\mathcal{B}(\mathcal{B}\,\mu_r)} \mathscr{M}or(\mathcal{B}\,\mu_r, X)$$

emark: $\mathscr{B}_{\mathbb{M}}(r) = \operatorname{Ext}(\operatorname{id}_r) = \mathfrak{M}_{0,(r,r,1)} \underset{\mathfrak{M}_{0,(r,r)}}{\times} \operatorname{id}_r = * \underset{\mathcal{B}^2 \mu_r}{\times} * = \Omega \,\mathcal{B}^2 \,\mu_r = \mathcal{B}\,\mu_r$

Corollary

There is a lax morphism of
$$(\infty, 2)$$
-operads in $\mathfrak{dSt} \longrightarrow \mathfrak{Span}(\mathfrak{dSt}_{/-})^{\times}$
 $* \mapsto \overline{\mathscr{T}}_{\mu} X^{\mathcal{P}\text{-st}}$

Proof.

$$\mathscr{GW}(*) \simeq \coprod_{r \in \mathbb{N}+1} \underbrace{\operatorname{colim}}_{\mathfrak{B}(\mathfrak{B}\,\mu_{r})} \mathscr{M}or(\mathfrak{B}\,\mu_{r}, X) = \coprod_{r \in \mathbb{N}+1} \mathscr{M}or(\mathfrak{B}\,\mu_{r}, X)/\mathfrak{B}\,\mu_{r} \eqqcolon \overline{\mathscr{D}}_{\mu}X$$

Remark: $\mathscr{B}_{\mathfrak{M}}(r) = \operatorname{Ext}(\operatorname{id}_{r}) = \mathfrak{M}_{0,(r,r,1)} \underset{\mathfrak{M}_{0,(r,r)}}{\times} \{\operatorname{id}_{r}\} = \underset{\mathfrak{B}^{2}\mu_{r}}{*} = \Omega \,\mathfrak{B}^{2}\,\mu_{r} = \mathfrak{B}\,\mu_{r}$