Symmetric 2-Segal conditions for shifted cotangent groupoids

David Kern
Joint with Damien Calaque
Kunliga Tekniska Högskolan
Uppsala Universitet Geometry and Topology seminar 26th October 2023

Contents - Section 1: Shifted cotangent bundles

(1) Shifted cotangent bundles
(2) Shifted symplectic groupoids
(3) Calabi-Yau monads and correspondences

Algebraic symplectic structures and the cotangent complex

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2, \mathrm{cl}}(X) \subset \wedge^{2} \Omega_{X}^{1}$ If X is not smooth, Ω_{X}^{1} is not a vector bundle.

Algebraic symplectic structures and the cotangent complex

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2, \mathrm{cl}}(X) \subset \wedge^{2} \Omega_{X}^{1}$ If X is not smooth, Ω_{X}^{1} is not a vector bundle. Why?

Algebraic symplectic structures and the cotangent complex

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2, \mathrm{cl}}(X) \subset \wedge^{2} \Omega_{X}^{1}$ If X is not smooth, Ω_{X}^{1} is not a vector bundle. Why?

- Answer in the cotangent complex \mathbb{L}_{X}.

Algebraic symplectic structures and the cotangent complex

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2, \mathrm{cl}}(X) \subset \wedge^{2} \Omega_{X}^{1}$ If X is not smooth, Ω_{X}^{1} is not a vector bundle. Why?

- Answer in the cotangent complex \mathbb{L}_{X}.
"Algebraic" singularity: $X=\left\{f_{1}=\cdots=f_{r}=0\right\} \subset \mathbb{A}_{\mathbb{C}}^{n}$
$\mathbb{a}_{X}=\left[\mathcal{N}_{X / \mathbb{A}^{n}}^{-1} \xrightarrow{\mathrm{~d}} \Omega_{\mathbb{A}^{n} \mid X}^{1}{ }^{0}\right]$ where $\mathcal{N}_{X / \mathbb{A}^{n}}^{\vee}=\mathscr{F} / \mathcal{F}^{2}, \mathscr{F}$ ideal generated by f_{1}, \ldots, f_{r}

Algebraic symplectic structures and the cotangent complex

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2, \mathrm{cl}}(X) \subset \wedge^{2} \Omega_{X}^{1}$ If X is not smooth, Ω_{X}^{1} is not a vector bundle. Why?

- Answer in the cotangent complex \mathbb{L}_{X}.
"Algebraic" singularity: $X=\left\{f_{1}=\cdots=f_{r}=0\right\} \subset \mathbb{A}_{\mathbb{C}}^{n}$
$\mathbb{U}_{X}=\left[\mathcal{N}_{X / \mathbb{A}^{n}}^{-\vee^{1}} \xrightarrow{d} \Omega_{\mathbb{A}^{n} \mid X}^{1} \mid\right.$ where $\mathcal{N}_{X / \mathbb{A}^{n}}^{\vee}=\mathscr{F} / \mathcal{F}^{2}, \mathscr{F}$ ideal generated by f_{1}, \ldots, f_{r} Also $\mathbb{L}_{X / \mathbb{A}^{n}}=\mathcal{N}_{X / \mathbb{A}^{n}}^{\vee}[1] \quad \Longrightarrow$ Notation $\mathbb{N}_{X}^{\vee}:=\mathbb{L}_{X}[-1]$

Algebraic symplectic structures and the cotangent complex

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2, \mathrm{cl}}(X) \subset \wedge^{2} \Omega_{X}^{1}$ If X is not smooth, Ω_{X}^{1} is not a vector bundle. Why?

- Answer in the cotangent complex \mathbb{L}_{X}.
"Algebraic" singularity: $X=\left\{f_{1}=\cdots=f_{r}=0\right\} \subset \mathbb{A}_{C}^{n}$
$\mathbb{L}_{X}=\left[\left.\mathcal{N}_{X / A^{n}}^{\stackrel{\rightharpoonup}{v}} \xrightarrow{d} \Omega_{A^{n}}^{1}\right|_{X}\right]$ where $\mathcal{N}_{X / A^{n}}^{\vee}=\mathscr{F} / \mathscr{F}^{2}, \mathscr{F}$ ideal generated by f_{1}, \ldots, f_{r}
Also $\mathbb{L}_{X / \mathbb{A}^{n}}=\mathcal{N}_{X / \mathbb{A}^{n}}^{\vee}[1] \quad \Longrightarrow$ Notation $\mathbb{N}_{X}^{\vee}:=\mathbb{Q}_{X}[-1]$
Orbisingularity: $X=[V / G]$
$\mathbb{a}_{X}=\quad \quad\left[\Omega_{V}^{1} \xrightarrow{d} \mathfrak{g}^{\vee} \stackrel{1}{\otimes} \mathcal{O}_{V}\right] \quad$ (Remark: $\left.\mathfrak{Q} \mathscr{C o l r}(X)=\mathfrak{Q} \mathbb{C} \operatorname{Colr}(V)^{G}\right)$

Algebraic symplectic structures and the cotangent complex

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2, \mathrm{cl}}(X) \subset \wedge^{2} \Omega_{X}^{1}$ If X is not smooth, Ω_{X}^{1} is not a vector bundle. Why?

- Answer in the cotangent complex \mathbb{L}_{X}.
"Algebraic" singularity: $X=\left\{f_{1}=\cdots=f_{r}=0\right\} \subset \mathbb{A}_{C}^{n}$

Also $\mathbb{L}_{X / \mathbb{A}^{n}}=\mathcal{N}_{X / \mathbb{A}^{n}}^{\vee}[1] \quad \Longrightarrow$ Notation $\mathbb{N}_{X}^{\vee}:=\mathbb{L}_{X}[-1]$
Orbisingularity: $X=[V / G]$
$\mathbb{a}_{X}=\quad\left[\Omega_{V}^{1} \xrightarrow{d} \mathfrak{g}^{\vee} \stackrel{1}{\otimes} \mathcal{O}_{V}\right] \quad\left(\right.$ Remark: $\left.\mathfrak{O} \mathscr{C o l r}(X)=\mathbb{Q} \mathbb{C o l r}(V)^{G}\right)$
Note: In both cases, \mathbb{L}_{X} is a finite complex of vector bundles, aka a perfect complex.

Derived schemes

Upshot: Symplectic forms in singular settings should "live in" $\Gamma\left(\wedge^{2} \mathbb{L}_{X}\right)$. How do we make it natural?

Derived schemes

Upshot: Symplectic forms in singular settings should "live in" $\Gamma\left(\wedge^{2} \mathbb{L}_{X}\right)$. How do we make it natural?
$-X \underset{\text { loc. }}{=} \operatorname{Spec} R$ with R an algebra in $\operatorname{MoD}_{\mathbb{C}}$, and $\Omega_{X, x}^{1} \in \mathbb{M o d}_{\mathbb{C}}$ for any $x: \operatorname{Spec} \mathbb{C} \rightarrow X$

How to reconcile the two?

Derived schemes

Upshot: Symplectic forms in singular settings should "live in" $\Gamma\left(\wedge^{2} \mathbb{L}_{X}\right)$. How do we make it natural?
$-X \underset{\text { loc. }}{=} \operatorname{Spec} R$ with R an algebra in $\operatorname{Mod}_{\mathbb{C}}$, and $\Omega_{X, x}^{1} \in \operatorname{Mog}_{\mathbb{C}}$ for any $x: \operatorname{Spec} \mathbb{C} \rightarrow X$

How to reconcile the two?

Definition

 $\mathfrak{b} \mathcal{A} \mathcal{F} \mathbb{F}_{\mathbb{C}}=\mathfrak{b} \mathcal{A} \mathfrak{g}_{\mathbb{C}}{ }^{\text {op }}$ and derived schemes are locally derived affines

Symplectic forms redux

X a derived scheme (or stack). $\mathscr{A}^{2}(X, 0):=\Gamma\left(X, \wedge^{2} \mathbb{L}_{X}\right)$

Remark

$\wedge^{2} \mathbb{L}_{X}=\operatorname{Sym}^{2}\left(\mathbb{L}_{X}[1]\right)[-2]$
Indeed, by antisymmetry of odd degrees, $\operatorname{Sym}^{\bullet}(M[1])=\underset{n \geqslant 0}{\bigoplus}\left(\wedge^{n} M\right)[n]$

Symplectic forms redux

X a derived scheme (or stack). $\mathscr{A}^{2}(X, 0):=\Gamma\left(X, \wedge^{2} \mathbb{L}_{X}\right)$

Remark

$\wedge^{2} \mathbb{L}_{X}=\operatorname{Sym}^{2}\left(\mathbb{L}_{X}[1]\right)[-2]$
Indeed, by antisymmetry of odd degrees, $\operatorname{Sym}^{\bullet}(M[1])=\underset{n \geqslant 0}{\bigoplus}\left(\wedge^{n} M\right)[n]$

New phenomenon for derived modules: we can shift them!
Definition (n -shifted 2 -forms)
$\mathscr{A}^{2}(X, n)=\Gamma\left(X,\left(\wedge^{2} \mathbb{L}_{X}\right)[n]\right)=\Gamma\left(X, \operatorname{Sym}^{2}\left(\mathbb{L}_{X}[1]\right)[n-2]\right)$

Symplectic forms redux

X a derived scheme (or stack). $\mathscr{A}^{2}(X, 0):=\Gamma\left(X, \wedge^{2} \mathbb{L}_{X}\right)$

Remark

$\wedge^{2} \mathbb{L}_{X}=\operatorname{Sym}^{2}\left(\mathbb{L}_{X}[1]\right)[-2]$
Indeed, by antisymmetry of odd degrees, $\operatorname{Sym}^{\bullet}(M[1])=\underset{n \geqslant 0}{\bigoplus}\left(\wedge^{n} M\right)[n]$

New phenomenon for derived modules: we can shift them!

Definition (n -shifted 2-forms)

$\mathscr{A}^{2}(X, n)=\Gamma\left(X,\left(\wedge^{2} \mathbb{L}_{X}\right)[n]\right)=\Gamma\left(X, \operatorname{Sym}^{2}\left(\mathbb{L}_{X}[1]\right)[n-2]\right)$
Closed n-shifted 2-forms $=n$-shifted presymplectic forms

$$
\mathscr{A}^{2}, \mathrm{~d}(X, n)=\left\{\omega_{0} \in \mathscr{A}^{2}(X, n)+\operatorname{key} \mathrm{d}_{\mathrm{dR}} \omega_{0}=\mathrm{d} \omega_{1}, \mathrm{~d}_{\mathrm{dR}} \omega_{1}=\mathrm{d} \omega_{2}, \ldots\right\} \rightarrow \mathscr{A}^{2}(X, n)
$$

Examples

$\omega_{0}: \mathcal{O}_{X} \rightarrow \mathbb{L}_{X} \wedge \mathbb{L}_{X}[n]$ an n-shifted 2-form is non-degenerate if $\omega_{0}^{b}: \mathbb{T}_{X}:=\mathbb{L}_{X}^{\vee} \xrightarrow{\simeq} \mathbb{L}_{X}[n]$: exhibit symmetry of the cotangent complex

Examples

$\omega_{0}: \mathcal{O}_{X} \rightarrow \mathbb{L}_{X} \wedge \mathbb{L}_{X}[n]$ an n-shifted 2-form is non-degenerate if $\omega_{0}^{b}: \mathbb{T}_{X}:=\mathbb{L}_{X}^{\vee} \xrightarrow{\simeq} \mathbb{L}_{X}[n]:$ exhibit symmetry of the cotangent complex

Derived critical loci are (-1)-shifted symplectic

$\mathbb{L}_{X}=\left[T_{Y} \xrightarrow{\text { Hess }(f)} T_{Y}\right]$
$\mathbb{T}_{X}=$
$\left[\left(T_{Y}^{\vee}\right)^{\vee}\right] \xrightarrow{\text { Hess }(f)^{\vee}} T_{Y}^{\vee}$

Examples

$\omega_{0}: \mathcal{O}_{X} \rightarrow \mathbb{L}_{X} \wedge \mathbb{L}_{X}[n]$ an n-shifted 2-form is non-degenerate if $\omega_{0}^{b}: \mathbb{T}_{X}:=\mathbb{L}_{X}^{\vee} \xrightarrow{\simeq} \mathbb{L}_{X}[n]$: exhibit symmetry of the cotangent complex

Derived critical loci are (-1)-shifted symplectic

$$
\begin{aligned}
& \mathbb{R} \operatorname{Crit}(f) \longrightarrow Y \\
& \stackrel{\downarrow}{Y} \xrightarrow{\quad{ }^{\downarrow}{ }^{\vee}{ }^{\vee} Y} \\
& \begin{array}{ll}
\mathbb{Q}_{X}=\left[T_{Y} \xrightarrow{\operatorname{Hess}(f)}\right. & \left.T_{Y}^{\vee}\right] \\
\mathbb{T}_{X}= & {\left[\left(T_{Y}^{\vee}\right)^{\vee}\right] \xrightarrow{\text { Hess }(f)^{\vee}} T_{Y}^{\vee}}
\end{array}
\end{aligned}
$$

B G is 2-shifted symplectic
$\mathbb{L}_{\mathcal{B} G}=\mathfrak{g}^{\vee}[-1]$, whence $\omega_{0} \in \Gamma\left(\mathcal{B} G, \wedge^{2} \mathbb{L}_{\mathcal{B} G}\right)[2]=\operatorname{Sym}^{2}\left(\mathfrak{g}^{\vee}\right)^{G}$ is the Killing form

Examples

$\omega_{0}: \mathcal{O}_{X} \rightarrow \mathbb{L}_{X} \wedge \mathbb{L}_{X}[n]$ an n-shifted 2-form is non-degenerate if $\omega_{0}^{b}: \mathbb{T}_{X}:=\mathbb{L}_{X}^{\vee} \xrightarrow{\simeq} \mathbb{L}_{X}[n]:$ exhibit symmetry of the cotangent complex

Derived critical loci are (-1)-shifted symplectic

$$
\begin{aligned}
& \mathbb{R} \operatorname{Crit}(f) \longrightarrow Y
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{Q}_{X}=\left[T_{Y} \xrightarrow{\text { Hess }(f)} T_{Y} \vee\right] \\
& \mathbb{T}_{X}=\quad\left[\left(T_{Y}\right)^{\vee}\right] \xrightarrow{\text { Hess }(f)^{\vee}} T_{Y}^{\vee}
\end{aligned}
$$

\mathcal{B} G is 2-shifted symplectic

$\mathbb{L}_{\mathcal{B} G}=\mathfrak{g}^{\vee}[-1]$, whence $\omega_{0} \in \Gamma\left(\mathcal{B} G, \wedge^{2} \mathbb{L}_{\mathcal{B} G}\right)[2]=\operatorname{Sym}^{2}\left(\mathfrak{g}^{\vee}\right)^{G}$ is the Killing form
Shifted cotangent stacks are shifted symplectic (Calaque)
$T^{\vee}[n] Y=\mathbb{V}_{Y}\left(\mathbb{L}_{Y}[n]\right)$ total space of $\mathbb{L}_{Y}[n]^{\vee}$, with $\omega_{0}=d_{d \mathbb{R}} \theta, \theta$ soldering form

Yonedark magic

Lemma (Pantev-Toën-Vaquié-Vezzosi)
$\mathfrak{b} \mathcal{A F E} \mathbb{C}^{\text {op }} \ni R \mapsto \mathscr{A}^{2, \mathrm{cl}}(\operatorname{Spec} R, n)$ satisfies étale descent, i.e. it is a sheaf/stack: "moduli stack of n-shifted presymplectic forms" $\mathscr{A}^{2, \mathrm{cl}}(-, n)$.

Yonedark magic

Lemma (Pantev-Toën-Vaquié-Vezzosi)

$\mathfrak{D} \mathcal{A} \mathcal{F f}_{\mathbb{C}^{\text {op }}} \ni R \mapsto \mathscr{A}^{2, \mathrm{cl}}(\operatorname{Spec} R, n)$ satisfies étale descent, i.e. it is a sheaf/stack: "moduli stack of n-shifted presymplectic forms" $\mathscr{A}^{2, \mathrm{cl}}(-, n)$.

Corollary (Pantev-Toën-Vaquié-Vezzosi)

For any derived stack X,

$$
\mathscr{A}^{2, \mathrm{cl}}(X, n) \simeq \operatorname{hom}\left(X, \mathscr{A}^{2, \mathrm{cl}}(-, n)\right)
$$

Consequence: The ∞-category of n-shifted presymplectic derived stacks is a (slice) ∞-topos

$$
\mathfrak{p r S y m p}(n)=\mathfrak{b S t}_{/ \mathfrak{s l}^{2, \mathrm{~d}}(-, n)}
$$

$\operatorname{Symp}(n)$ is the full subcategory of $\mathfrak{i S t} / \sin ^{2, c \mathrm{~d}}(-, n)$ on the non-degenerate forms: in practice, work in $\mathfrak{D S t}_{/ A^{2}, \mathrm{dl}}^{(-, n)}$ and then check non-degeneracy.

Lagrangian correspondences

(Pre-)Lagrangian structures

Isotropic structure on $f: Y \rightarrow X$ relative to $\omega \in \mathscr{A}^{2, \mathrm{cl}}(X, n)$:
trivialisation $f^{*} \omega \xrightarrow{\simeq} 0$ in $\mathscr{A}^{2, \mathrm{cl}}(Y, n)$

Lagrangian correspondences

Pulling back presymplectic forms

$\ulcorner\omega\urcorner: X \rightarrow \mathscr{A}^{2, \mathrm{c}}(-, n)$ (pre)symplectic, $f: Y \rightarrow X$. Then $\left\ulcorner f^{*} \omega\right\urcorner: Y \xrightarrow{f} X \xrightarrow{\ulcorner\omega\urcorner} \mathscr{A}^{2, \mathrm{cl}}(-, n)$

(Pre-)Lagrangian structures

Isotropic structure on $f: Y \rightarrow X$
relative to $\omega \in \mathscr{A}^{2, \mathrm{cl}}(X, n)$:
trivialisation $f^{*} \omega \xrightarrow{\simeq} 0$ in $\mathscr{A}^{2, \mathrm{cl}}(Y, n)$

Lagrangian correspondences

Pulling back presymplectic forms

$$
\ulcorner\omega\urcorner: X \rightarrow \mathscr{A}^{2, \mathrm{cl}}(-, n) \text { (pre)symplectic, } f: Y \rightarrow X \text {. Then }\left\ulcorner f^{*} \omega\right\urcorner: Y \xrightarrow{f} X \xrightarrow{\ulcorner\omega\urcorner} \mathscr{A}^{2, \mathrm{cl}}(-, n)
$$

(Pre-)Lagrangian structures

Isotropic structure on $f: Y \rightarrow X$
relative to $\omega \in \mathscr{A}^{2, \mathrm{cl}}(X, n)$:
trivialisation $f^{*} \omega \xrightarrow{\simeq} 0$ in $\mathscr{A}^{2, \mathrm{cl}}(Y, n)$
\Longrightarrow Lagrangian corresp. $(Y, \psi) \rightarrow(X, \omega)$ is
 X nondegen.

Shifting phenomena in symplectic geometry

Delooping (Calaque)

A Lagrangian structure on $X \rightarrow\left(*,!\omega_{(n+1)}\right)$ is an n-symplectic structure on X

Shifting phenomena in symplectic geometry

Delooping (Calaque)

A Lagrangian structure on $X \rightarrow\left(*,!\omega_{(n+1)}\right)$ is an n-symplectic structure on X

$$
\begin{aligned}
& \text { Lagrangian intersections (Pantev-Toën-Vaquié-Vezzosi) } \\
& L_{1} \times{ }^{\prime} L_{2} \longrightarrow L_{1} \\
& \quad \downarrow \stackrel{\text { Lagr. }}{\downarrow} \underset{\text { Lagr. with } X}{ } \text { X }
\end{aligned}
$$

Ex.: Recover derived critical loci: $0, \mathrm{~d}_{\mathrm{dR}} f: V \rightarrow T^{\vee}[n] \vee$ Lagrangian

Shifting phenomena in symplectic geometry

Delooping (Calaque)

A Lagrangian structure on $X \rightarrow\left(*,!\omega_{(n+1)}\right)$ is an n-symplectic structure on X
Lagrangian intersections (Pantev-Toën-Vaquié-Vezzosi)
$L_{1} \times{ }_{X} L_{2} \longrightarrow L_{1}$

Ex:: Recover derived critical loci: $0, \mathrm{~d}_{\mathrm{dR}} f: V \rightarrow T^{\vee}[n] V$ Lagrangian
Quotients of symplectic groupoids (Calaque-Safronov)
$G_{\bullet} n$-shifted symplectic groupoid $\Longrightarrow\left|G_{0}\right|(n+1)$-symplectic stack

Contents - Section 2: Shifted symplectic groupoids

(1) Shifted cotangent bundles

(2) Shifted symplectic groupoids

Atlases and groupoids for algebraic derived stacks

An n-Artin derived stack X admits an atlas $\oplus: U \rightarrow X$ where

- U is a union of affine derived schemes,
- Φ is smooth with ($n-1$)-Artin fibres.

Atlases and groupoids for algebraic derived stacks

An n-Artin derived stack X admits an atlas $\varpi: U \rightarrow X$ where

- U is a union of affine derived schemes,
- $\mathfrak{\infty}$ is smooth with ($n-1$)-Artin fibres.

Taking the kernel (aka nerve) of the surjection ϖ : get a groupoid G_{\bullet} (in $\mathfrak{b S t}$)

$$
\ldots \quad G_{2}=U \times_{x} U \times_{x} U \underset{ }{\rightleftarrows} G_{1}=U \times_{x} U \underset{\longleftrightarrow}{\rightleftarrows} G_{0}=U
$$

where:

- G_{i} is a union of $(n-1)$-Artin stacks
- $G_{i+1} \rightarrow G_{i}$ is smooth with ($n-1$)-Artin fibres
and $X=\left|G_{\bullet}\right|=\underset{\longrightarrow}{\operatorname{colim}} G_{\bullet}$

Groupoids in general

Notation: For $f:[k] \rightarrow[n]$ in Δ, write $X_{n} \rightarrow X_{\{f(1), \ldots, f(k)\}}=X_{k}$

Internal categories

A category object in an ∞-category \mathbb{C} is a simplicial object $X_{\bullet}: \Delta^{\mathrm{op}} \rightarrow \mathbb{C}$ such that the Segal cone $\left\{X_{n} \rightarrow X_{\{i, i+1\}}=X_{1}\right\}_{0 \leqslant i \leqslant n}$ exhibits $X_{n}=X_{1} \underset{d_{0}, X_{0}, d_{1}}{\times} \quad \cdots \underset{d_{0}, X_{0}, d_{1}}{\times} X_{1}$

Groupoids in general

Notation: For $f:[k] \rightarrow[n]$ in Δ, write $X_{n} \rightarrow X_{\{f(1), \ldots, f(k)\}}=X_{k}$

Internal categories

A category object in an ∞-category \mathbb{C} is a simplicial object $X_{\bullet}: \Delta^{\mathrm{op}} \rightarrow \mathbb{C}$ such that the Segal cone $\left\{X_{n} \rightarrow X_{\{i, i+1\}}=X_{1}\right\}_{0 \leqslant i \leqslant n}$ exhibits $X_{n}=X_{1} \underset{d_{0}, X_{0}, d_{1}}{\times} \cdots \underset{d_{0}, X_{0}, d_{1}}{\times} X_{1}$
X_{0} is further a groupoid object if, equivalently:

- Unordered Segal decomposition(s): $X_{2} \xrightarrow{\simeq} X_{\{0,1\}} \underset{X_{\{0\}}}{\times} X_{\{0,2\}}$ and $X_{2} \xrightarrow{\simeq} X_{\{1,2\}} \times X_{\{2\}} \times X_{\{0,2\}}$
- Compatible $5_{\bullet+1}$-actions (in fact only need the sub- $C_{\bullet+1}$-actions)

Groupoids in general

Notation: For $f:[k] \rightarrow[n]$ in Δ, write $X_{n} \rightarrow X_{\{f(1), \ldots, f(k)\}}=X_{k}$

Internal categories

A category object in an ∞-category \mathbb{C} is a simplicial object $X_{\bullet}: \Delta^{\mathrm{op}} \rightarrow \mathbb{C}$ such that the Segal cone $\left\{X_{n} \rightarrow X_{\{i, i+1\}}=X_{1}\right\}_{0 \leqslant i \leqslant n}$ exhibits $X_{n}=X_{1} \underset{d_{0}, X_{0}, d_{1}}{\times} \underset{d_{0}, X_{0}, d_{1}}{\times} X_{1}$
X_{0} is further a groupoid object if, equivalently:

- Unordered Segal decomposition(s): $X_{2} \xrightarrow{\simeq} X_{\{0,1\}} \underset{X_{\{0\}}}{\times} X_{\{0,2\}}$ and $X_{2} \xrightarrow{\simeq} X_{\{1,2\}} \times X_{\{20,2\}}$
- Compatible $\mathfrak{S}_{\bullet+1}$-actions (in fact only need the sub- $C_{\bullet+1}$-actions)

A monoid in $\mathbb{C} \rightsquigarrow$ internal category Bar. A with $\operatorname{Bar}_{n} A=A^{n}$. Groupoid iff A is a group.

Shifted symplectic groupoids

$A^{2, \mathrm{cl}}(n)$ abelian group \Longrightarrow groupoid $\operatorname{Bar}_{\bullet} \mathscr{A}^{2, \mathrm{cl}}(n)$ in $\mathfrak{D S t}$.
Definition (Shifted presymplectic groupoid)
An n-shifted symplectic groupoid is a groupoid G_{\bullet} in $\mathfrak{i S t}$ over Bar• $\mathscr{A}^{2, \mathrm{cl}}(n)$

Shifted symplectic groupoids

$\mathscr{A}^{2, \mathrm{cl}}(n)$ abelian group \Longrightarrow groupoid $\mathrm{Bar}_{\bullet} \cdot \mathscr{A}^{2, \mathrm{~d}}(n)$ in $\mathfrak{i s t}$.

Definition (Shifted presymplectic groupoid)

An n-shifted symplectic groupoid is a groupoid G_{\bullet} in $\mathfrak{i S t}$ over Bar• $\mathscr{A}^{2, \mathrm{cl}}(n)$

Consequences

- For any k, map $G_{k} \xrightarrow{\left(\left\ulcorner\theta_{1}\right\urcorner, \ldots,\left\ulcorner\theta_{k}\right\urcorner\right)} \mathscr{A}^{2, \mathrm{cl}}(n)^{k} \leadsto k n$-symplectic structures θ_{i} on G_{k}
- Isotropic correspondence $\gamma_{k}: G_{1}^{k} \leftarrow G_{k} \rightarrow G_{1}$
G_{\bullet} is n-symplectic if the γ_{k} are Lagrangian correspondences

Symplectic presentations

Proposition (Calaque-Safronov)

An n-presymplectic structure ω_{\bullet} on G_{\bullet} induces an $(n+1)$-shifted isotropic structure on $G_{0} \rightarrow\left|G_{\bullet}\right|$. It is Lagrangian (in part. $\left|G_{\bullet}\right|$ is ($n+1$)-symplectic) iff ω_{\bullet} is symplectic.

Symplectic presentations

Proposition (Calaque-Safronov)

An n-presymplectic structure ω_{\bullet} on G_{\bullet} induces an $(n+1)$-shifted isotropic structure on $G_{0} \rightarrow\left|G_{\bullet}\right|$. It is Lagrangian (in part. $\left|G_{\bullet}\right|$ is ($n+1$)-symplectic) iff ω_{\bullet} is symplectic.

Theorem (Calaque-K.)
$X=\left|G_{0}\right|$ derived Artin stack with atlas $G_{\text {. }}$. Then $T^{\vee}[n+1] X$ admits a presentation by a symplectic groupoid given in level k by

$$
N^{\vee}[n]\left(G_{k} \rightarrow G_{1}^{k+1}=G_{\{0,1\}} \times \cdots \times G_{\{k-1, k\}} \times \overline{G_{\{0, k\}}}\right)
$$

Symplectic presentations

Proposition (Calaque-Safronov)

An n-presymplectic structure ω_{\bullet} on G_{\bullet} induces an $(n+1)$-shifted isotropic structure on $G_{0} \rightarrow\left|G_{\bullet}\right|$. It is Lagrangian (in part. $\left|G_{\bullet}\right|$ is $(n+1)$-symplectic) iff ω_{\bullet} is symplectic.

Theorem (Calaque-K.)

$X=\left|G_{\bullet}\right|$ derived Artin stack with atlas G_{\bullet}. Then $T^{\vee}[n+1] X$ admits a presentation by a symplectic groupoid given in level k by

$$
N^{\vee}[n]\left(G_{k} \rightarrow G_{1}^{k+1}=G_{\{0,1\}} \times \cdots \times G_{\{k-1, k\}} \times \overline{G_{\{0, k\}}}\right)
$$

For $\mathcal{B} G=\mid$ Bar. $G \mid$
$N^{\vee}[n]\left(G^{k} \rightarrow G^{k} \times G\right) \simeq\left(T^{\vee}[n] G\right) \times{ }_{G} G^{k}=\mathbb{V}_{G^{k}}\left(\mathfrak{g}^{\vee}[n] \otimes \mathcal{O}_{G^{k}}\right)$: quotient by adjoint G-action

First ingredient: functoriality of cotangent bundles

$f: Y \rightarrow X$ morphism of Artin derived stacks: there is a Lagrangian correspondence

Upshot: ∞-functor \mathscr{T} :

First ingredient: functoriality of cotangent bundles

$f: Y \rightarrow X$ morphism of Artin derived stacks: there is a Lagrangian correspondence

More generally, for any span $Y \stackrel{g}{\leftarrow} Z \xrightarrow{f} X$ of Artin derived stacks, Lagrangian

Upshot: ∞-functor $\left.\mathscr{T}: \operatorname{Span}(\mathfrak{1 S t}) \xrightarrow{\left(T^{\vee}[n], N^{\vee}[n]\right)} \operatorname{Cag} \mathbb{C o r r}(n) \subset{\operatorname{Spann}\left(\mathfrak{i S t} / \mathscr{A}^{2}, \mathrm{cl}(n)\right.}\right)$

Groupoids and algebras in spans

Problem: \mathscr{T} has no reason to send a groupoid in $\mathfrak{i S t}$ to a groupoid in $\mathfrak{i S t} / \mathscr{s l}^{2}, \mathrm{cl}(n)$. If \mathcal{T} does not preserve groupoids in arrows, what does it preserve?

Groupoids and algebras in spans

Problem: \mathscr{T} has no reason to send a groupoid in $\mathfrak{i S t}$ to a groupoid in $\mathfrak{i S t} / \mathscr{A}^{2, c \mathrm{~d}}(n)$. If \mathcal{T} does not preserve groupoids in arrows, what does it preserve?

Remark:

1. For any \mathbb{C} with limits, $\operatorname{Span}(\mathbb{C})$ has a monoidal structure " \times " by C " \times " $D=C \times D$

Groupoids and algebras in spans

Problem: \mathscr{T} has no reason to send a groupoid in $\mathfrak{i S t}$ to a groupoid in $\mathfrak{i S t} / \mathscr{A}^{2, \mathrm{cl}}(n)$. If \mathscr{T} does not preserve groupoids in arrows, what does it preserve?

Remark:

1. For any \mathbb{C} with limits, $\operatorname{Span}(\mathbb{C})$ has a monoidal structure " \times " by C " \times " $D=C \times D$
2. If $(M,+)$ is a monoid in \mathbb{C}, monoidal structure on $\operatorname{Span}(\mathbb{C} / M)$ with

Our \mathcal{T} is a monoidal functor $\operatorname{Span}(\mathfrak{i S t})^{" \times "} \rightarrow \operatorname{CagCorr}(n)^{\boxplus}$

Contents - Section 3: Calabi-Yau monads and correspondences

(1) Shifted cotangent bundles

(2) Shifted symplectic groupoids
(3) Calabi-Yau monads and correspondences

Groupoids as algebras in spans

X. category object in \mathbb{C}
$\rightsquigarrow X_{1}$ is an algebra in $\operatorname{Span}(\mathbb{C})$ with

- unit given by
- multiplication

Groupoids as algebras in spans

X. category object in \mathbb{C}
$\rightsquigarrow X_{1}$ is an algebra in $\operatorname{Span}(\mathbb{C})$ with

- unit given by
- multiplication

X. groupoid: cyclic actions $\tau: X_{n+1} \xrightarrow{\simeq} X_{n+1}$ give Calabi-Yau (aka Frobenius) structure

Groupoids as algebras in spans

X. category object in \mathbb{C}
$\rightsquigarrow X_{1}$ is an algebra in $\operatorname{Span}(\mathbb{C})$ with

- unit given by

- multiplication

- groupoid: cyclic actions τ : $X_{n+1} \xrightarrow{\simeq} X_{n+1}$ give Calabi-Yau (aka Frobenius) structure

Problem: Not all (CY) algebras arise this way: $\left(d_{2}, d_{0}\right)$ isn't always an iso

2-Segal objects

Definition

A 2-Segal object in \mathbb{C} is $X_{\mathbf{0}}: \Delta^{\mathrm{op}} \rightarrow \mathbb{C}$ such that for any $N \geqslant 3$,

$$
X_{n} \xlongequal{\leftrightharpoons} X_{\{0,1,2\}} \underset{X_{\{0,2\}}}{\times} \ldots \underset{X_{\{0, n-2\}}}{\times} X_{\{0, n-2, n-1\}} \underset{X_{\{0, n-1\}}}{\times} X_{\{0, n-1, n\}}
$$

and

$$
X_{n} \xrightarrow{\leftrightharpoons} X_{\{0,1, n\}} \stackrel{\times}{X_{\{1, n\}}} \ldots \underset{X_{\{n-3, n\}}}{\times} X_{\{n-3, n-2, n\}} \stackrel{X_{\{n-2, n\}}}{\times} X_{\{n-2, n-1, n\}}
$$

2-Segal objects

Definition

A 2-Segal object in \mathbb{C} is $X_{\bullet}: \Delta^{\mathrm{op}} \rightarrow \mathbb{C}$ such that for any $N \geqslant 3$,

$$
X_{n} \xlongequal{\leftrightharpoons} X_{\{0,1,2\}} \underset{X_{\{0,2\}}}{\times} \ldots \underset{X_{\{0, n-2\}}}{\times} X_{\{0, n-2, n-1\}} \underset{X_{\{0, n-1\}}}{\times} X_{\{0, n-1, n\}}
$$

and

$$
X_{n} \xrightarrow{\leftrightharpoons} X_{\{0,1, n\}} \times \underset{X_{\{1, n\}}}{\times} \times \underset{X_{\{n-3, n\}}}{\times} X_{\{n-3, n-2, n\}} \stackrel{X_{\{n-2, n\}}}{\times} X_{\{n-2, n-1, n\}}
$$

For $N=3$

The algebra of 2-Segal objects

Theorem (Penney, Gal-Gal, Stern)

There is an equivalence of ∞-categories between (cyclic) 2-Segal objects in \mathbb{C} and (CY) algebras in Span($\mathbb{C})$.

The algebra of 2-Segal objects

Theorem (Penney, Gal-Gal, Stern)

There is an equivalence of ∞-categories between (cyclic) 2-Segal objects in \mathbb{C} and (CY) algebras in $\operatorname{Span}(\mathbb{C})$.

Lemma (Calaque-K.)

For any cyclic 2-Segal X_{\bullet}, the 1-Segal map $X_{2} \xrightarrow{\left(d_{2}, d_{0}\right)} X_{\{0,1\}} \times X_{\{1\}} X_{\{1,2\}}$ admits a section.
Proof.
$\gamma: X_{\{0,1\}} \times X_{\{1\}} X_{\{1,2\}} \xrightarrow{s_{1} \times_{s_{0}}\left(\tau^{2} \circ s_{0}\right)} X_{\{0,1,3\}} \times X_{\{1,3\}} X_{\{1,2,3\}} \xrightarrow{\left(d_{2}, d_{0}\right)^{-1}} X_{\{0,1,2,3\}} \xrightarrow{d_{3}} X_{\{0,1,2\}}$

The algebra of 2-Segal objects

Theorem (Penney, Gal-Gal, Stern)

There is an equivalence of ∞-categories between (cyclic) 2-Segal objects in \mathbb{C} and (CY) algebras in $\operatorname{Span}(\mathbb{C})$.

Lemma (Calaque-K.)

For any cyclic 2-Segal X_{\bullet}, the 1-Segal map $X_{2} \xrightarrow{\left(d_{2}, d_{0}\right)} X_{\{0,1\}} \times X_{\{1\}} X_{\{1,2\}}$ admits a section.

Proof.

$$
\gamma: X_{\{0,1\}} \times X_{\{1\}} X_{\{1,2\}} \xrightarrow{s_{1} \times_{s_{0}}\left(\tau^{2} \circ s_{0}\right)} X_{\{0,1,3\}} \times X_{\{1,3\}} X_{\{1,2,3\}} \xrightarrow{\left(d_{2}, d_{0}\right)^{-1}} X_{\{0,1,2,3\}} \xrightarrow{d_{3}} X_{\{0,1,2\}}
$$

Refining the algebra structure

γ section of $\left(d_{2}, d_{0}\right) \Longrightarrow X_{0}$ is 1 -Segal iff $\gamma \circ\left(d_{2}, d_{0}\right)=\mathrm{id}_{X_{2}}$
Problem: 1-Segal condition is $X_{1} \times x_{0} X_{1} \simeq X_{2}$, but algebra only knows $X_{1} \times X_{1} \leftarrow X_{2}$

Refining the algebra structure

γ section of $\left(d_{2}, d_{0}\right) \Longrightarrow X_{0}$ is 1 -Segal iff $\gamma \circ\left(d_{2}, d_{0}\right)=\operatorname{id}_{X_{2}}$
Problem: 1-Segal condition is $X_{1} \times x_{0} X_{1} \simeq X_{2}$, but algebra only knows $X_{1} \times X_{1} \leftarrow X_{2}$
\rightsquigarrow Replace monoidal structure " \times " by
$\stackrel{\times}{d_{0}, X_{0}, d_{1}}$
Requires: know that X_{1} lives over X_{1}, in two different ways d_{1}, d_{0}

Refining the algebra structure

γ section of $\left(d_{2}, d_{0}\right) \Longrightarrow X_{0}$ is 1 -Segal iff $\gamma \circ\left(d_{2}, d_{0}\right)=\operatorname{id}_{X_{2}}$
Problem: 1-Segal condition is $X_{1} \times x_{0} X_{1} \simeq X_{2}$, but algebra only knows $X_{1} \times X_{1} \leftarrow X_{2}$
\rightsquigarrow Replace monoidal structure " \times " by

Requires: know that X_{1} lives over X_{1}, in two different ways d_{1}, d_{0}
\rightsquigarrow Composition in an ($\infty, 2$)-category (rather, double ∞-category) where $X_{0} \leftarrow X_{1} \rightarrow X_{0}$ are 1-arrows

Double ∞-category $\mathbb{S p m a n}_{1}^{+}(\mathfrak{D S t})$ of spans

Composition

Refining the algebra structure

γ section of $\left(d_{2}, d_{0}\right) \Longrightarrow X$ is 1 -Segal iff $\gamma \circ\left(d_{2}, d_{0}\right)=\mathrm{id}_{X_{2}}$
Problem: 1-Segal condition is $X_{1} \times x_{0} X_{1} \simeq X_{2}$, but algebra only knows $X_{1} \times X_{1} \leftarrow X_{2}$
\rightsquigarrow Replace monoidal structure " \times " by

$$
\stackrel{\stackrel{\times}{d_{0}, X_{0}, d_{1}}}{ }
$$

Requires: know that X_{1} lives over X_{1}, in two different ways d_{1}, d_{0}
\rightsquigarrow Composition in an ($\infty, 2$)-category (rather, double ∞-category) where $X_{0} \leftarrow X_{1} \rightarrow X_{0}$ are 1 -arrows and spans are the 2-arrows

Double ∞-category $\mathbb{S p a m}_{2}(\mathrm{ASt})$ of iterated spans

Composition

Monads in double categories

A monad in a double ∞-category \mathfrak{k} is: horizontal endomorphism $X_{0} \xrightarrow{t} X_{0}$ with cells

Theorem (Dyckerhoff-Kapranov)

Every 2-Segal object X_{\bullet} in \mathbb{C} gives rise to a monad $\mathcal{H}\left(X_{\bullet}\right)$ in $\mathbb{S p a n}_{2}(\mathbb{C})$

Triple ∞-category of iterated spans

Questions

1. What about going back, from algebras in spans to 2 -Segal objects?
2. How to understand the 1 -Segal condition?
3. What about morphisms?

Triple ∞-category of iterated spans

Questions

1. What about going back, from algebras in spans to 2-Segal objects?
2. How to understand the 1 -Segal condition?
3. What about morphisms?

The triple ∞-category $\mathbb{S p a m}_{2}^{+}(\mathrm{DSt})$

Now 3 directions for
arrows: horizontal, vertical, transversal cells: horizontal, vertical, basic

+ cubes (maps between iterated spans)

Triple ∞-category of iterated spans

Questions

1. What about going back, from algebras in spans to 2-Segal objects?
2. How to understand the 1 -Segal condition?
3. What about morphisms?

The triple ∞-category $\mathbb{S p a m}_{2}^{+}(\mathrm{DSt})$

Now 3 directions for
arrows: horizontal, vertical, transversal cells: horizontal, vertical, basic

+ cubes (maps between iterated spans)
\Longrightarrow Basic monads recover the Theorem

The joys of companionship

Companion pairs in $\mathbb{S p a m}_{2}^{+}(\mathfrak{} \mathfrak{D S t})$

The joys of companionship

Companion pairs in $\mathbb{S p a m}_{2}^{+}(\mathfrak{} \mathfrak{A S t})$

Universal characterisation (adjunction-style)

The joys of companionship

Companion pairs in $\mathrm{Spmm}_{2}^{+}(\mathrm{BSt})$

Universal characterisation (adjunction-style)

First consequence

Unit cell of $\mathcal{H}\left(X_{\bullet}\right)$ is:

$$
\begin{aligned}
& X_{0}=X_{0}=X_{0} \\
& \| \\
& \| \\
& X_{0}=X_{0}=X_{0} \quad \rightsquigarrow \text { must be a companion } \\
& \| \\
& { }_{\|} s_{0} \quad \| \\
& X_{0} \leftarrow X_{1} \rightarrow X_{0}
\end{aligned}
$$

Companion cells and the 1 -Segal condition

Observation

Considering only the companion (basic) cells in $\mathbb{S p a m}_{2}^{+}(\mathbb{C})$ recovers $\mathbb{S p a m}{ }_{1}^{+}(\mathbb{C})$

Companion cells and the 1-Segal condition

Observation

Considering only the companion (basic) cells in $\mathbb{S p a m}{ }_{2}^{+}(\mathbb{C})$ recovers $\mathbb{S p a m m}{ }_{1}^{+}(\mathbb{C})$

Corollary

Gregarious monads (structure cells are companions) in $\mathbb{S p a m m}{ }_{2}^{+}(\mathbb{C})$ are monads in $\mathbb{S p m m}_{1}^{+}(\mathbb{C})$ (Note: gregarious in $\mathbb{S p m a n}_{2}^{+}(\mathbb{C}) \Longleftrightarrow 1$-Segal condition):

Companion cells and the 1-Segal condition

Observation

Considering only the companion (basic) cells in $\mathbb{S p a m}_{2}^{+}(\mathbb{C})$ recovers $\mathbb{S p m a m} 1_{1}^{+}(\mathbb{C})$

Corollary

Gregarious monads (structure cells are companions) in $\mathbb{S p a m} n_{2}^{+}(\mathbb{C})$ are monads in $\mathbb{S p a m} n_{1}^{+}(\mathbb{C})$ (Note: gregarious in $\mathbb{S p a m m}_{2}^{+}(\mathbb{C}) \Longleftrightarrow 1$-Segal condition)

Lemma (Haugseng)

Monads in $\mathbb{S p m m}_{1}^{+}(\mathbb{C})$ are categories in \mathbb{C}

Likewise: CY monads in $\mathbb{S p m a m}_{2}^{+}(\mathbb{C})$ are cyclic 2-Segal objects, and groupoids iff the structure cells are companions (i.e. satisfy 1 -Segal)

Orthomorphisms and isotropic structures

An orthomorphism of (basic) monads is a transversal morphism between them

Orthomorphisms and isotropic structures

An orthomorphism of (basic) monads is a transversal morphism between them

Proposition

Orthomorphisms between (CY) monads in $\mathbb{S p a m}{ }_{2}^{+}(\mathbb{C})$ correspond to morphisms between (cyclic) 2-Segal objects: equivalence $\mathfrak{M n v o}{ }_{\perp}^{C Y}\left(\mathbb{S p p a n}_{2}^{+}(\mathbb{C})\right) \simeq 2-\mathfrak{S e g}^{S^{1}}(\mathbb{C})$

Orthomorphisms and isotropic structures

An orthomorphism of (basic) monads is a transversal morphism between them

Proposition

Orthomorphisms between (CY) monads in $\mathbb{S p a m}{ }_{2}^{+}(\mathbb{C})$ correspond to morphisms between (cyclic) 2-Segal objects: equivalence $\mathfrak{M n v o}{ }_{\perp}^{C Y}\left(\mathbb{S p p a n}_{2}^{+}(\mathbb{C})\right) \simeq 2-\mathfrak{S e g}^{S^{1}}(\mathbb{C})$

Lemma

Orthomorphisms and isotropic structures

An orthomorphism of (basic) monads is a transversal morphism between them

Proposition

Orthomorphisms between (CY) monads in $\mathbb{S p m a n}_{2}^{+}(\mathbb{C})$ correspond to morphisms between (cyclic) 2-Segal objects: equivalence $\mathbb{M n i o}{ }_{\perp}^{C Y}\left(\mathbb{S p a m} 2_{2}^{+}(\mathbb{C})\right) \simeq 2-\mathfrak{S e g}^{S^{1}}(\mathbb{C})$

Lemma

For any monoid A in \mathbb{C}, equivalence $\mathbb{M i n \mathfrak { D } _ { \perp } ^ { C Y }}\left(\mathbb{S p a m}_{2}^{+}\left(\mathbb{C}_{/ A}\right)\right) \xrightarrow{\simeq} \mathfrak{M n \mathfrak { D } _ { \perp } ^ { C Y }}\left(\mathbb{S p a m}_{2}^{+}(\mathbb{C})\right)_{/ A}$

Backup

Shifting and delooping for presymplectic forms

Lemma (looping-delooping)

$$
\Omega_{0} \mathscr{A}^{2, \mathrm{cl}}(n+1):=* \underset{\mathscr{A}^{2}, \mathrm{cl}(n+1)}{\times} * \simeq \mathscr{A}^{2, \mathrm{cl}}(n), \text { and conversely Bar} \bullet \mathscr{A}^{2, \mathrm{cl}}(n) \text { presents } \mathscr{A}^{2, \mathrm{cl}}(n+1)
$$

Shifting and delooping for presymplectic forms

Lemma (looping-delooping)
$\Omega_{0} \mathscr{A}^{2, \mathrm{cl}}(n+1):=* \underset{\mathscr{A}^{2, c \mathrm{c}}(n+1)}{\times} * \simeq \mathscr{A}^{2, \mathrm{cl}}(n)$, and conversely Bar$\bullet \mathscr{A}^{2, \mathrm{cl}}(n)$ presents $\mathscr{A}^{2, \mathrm{cl}}(n+1)$

Corollary
$G_{\bullet} n$-shifted presymplectic groupoid $\Longrightarrow(n+1)$-shifted isotropic $G_{0} \rightarrow\left|G_{\bullet}\right|$

Shifting and delooping for presymplectic forms

Lemma (looping-delooping)
$\Omega_{0} \mathscr{A}^{2, \mathrm{cl}}(n+1):=* \underset{\mathscr{A}^{2, c \mathrm{c}}(n+1)}{\times} * \simeq \mathscr{A}^{2, \mathrm{cl}}(n)$, and conversely Bar$\bullet \mathscr{A}^{2, \mathrm{cl}}(n)$ presents $\mathscr{A}^{2, \mathrm{cl}}(n+1)$

Corollary

$G_{\bullet} n$-shifted presymplectic groupoid $\Longrightarrow(n+1)$-shifted isotropic $G_{0} \rightarrow\left|G_{0}\right|$
Fact: "Quotient" colim: $\mathbb{C}^{\Delta^{\mathrm{op}}} \rightarrow \mathcal{A r}(\mathbb{C})=\mathbb{C}^{\rightarrow}$ is left-adjoint to ker. $: \mathcal{A} \mathfrak{r}(\mathbb{C}) \rightarrow \mathbb{C}^{\Delta^{\text {op }}}$ Observation: $\operatorname{ker}_{\bullet}\left(* \rightarrow \mathscr{A}^{2, \mathrm{cl}}(n+1)\right) \simeq \operatorname{Bar}_{\bullet} \cdot \mathscr{A}^{2, \mathrm{cl}}(n)$

Shifting and delooping for presymplectic forms

Lemma (looping-delooping)
$\Omega_{0} \mathscr{A}^{2, \mathrm{cl}}(n+1):=* \underset{\mathscr{A}^{2}, \mathrm{cl}(n+1)}{\times} * \simeq \mathscr{A}^{2, \mathrm{cl}}(n)$, and conversely Bar$\bullet \mathscr{A}^{2, \mathrm{cl}}(n)$ presents $\mathscr{A}^{2, \mathrm{cl}}(n+1)$

Corollary

G. n-shifted presymplectic groupoid $\Longrightarrow(n+1)$-shifted isotropic $G_{0} \rightarrow\left|G_{0}\right|$

Fact: "Quotient" colim: $\mathbb{C}^{\Delta^{\mathrm{op}}} \rightarrow \mathcal{A r}(\mathbb{C})=\mathbb{C}^{\rightarrow}$ is left-adjoint to ker. $: \mathcal{A} \mathfrak{r}(\mathbb{C}) \rightarrow \mathbb{C}^{\Delta^{\text {op }}}$ Observation: $\operatorname{ker}_{\bullet}\left(* \rightarrow \mathscr{A}^{2, \mathrm{cl}}(n+1)\right) \simeq \operatorname{Bar}_{\bullet} \cdot \mathscr{A}^{2, \mathrm{cl}}(n)$
$\Longrightarrow \quad G_{\bullet} \rightarrow \operatorname{Bar} \bullet A^{2, \mathrm{cl}}(n)$ corresponds to morphism of quotient maps

Non-degeneracy for isotropic correspondences

Classical Lagrangians

Non-degeneracy for isotropic correspondences

Classical Lagrangians

For shifted isotropic correspondences

Lagrangian if

Link with classical symplectic groupoids

Lemma (Calaque-Safronov)

G. n-shifted symplectic groupoid. Then the n-presymplectic structure on G_{1} is symplectic.

$$
\begin{aligned}
& \text { Proof. } \\
& G_{0} \rightarrow\left|G_{\bullet}\right| n \text {-Lagrangian } \Longrightarrow G_{1} \simeq G_{0} \times G_{\bullet} \mid G_{0} n \text {-symplectic }
\end{aligned}
$$

Link with classical symplectic groupoids

Lemma (Calaque-Safronov)

$G_{\bullet} n$-shifted symplectic groupoid. Then the n-presymplectic structure on G_{1} is symplectic.

Proof.

$G_{0} \rightarrow\left|G_{0}\right| n$-Lagrangian $\Longrightarrow G_{1} \simeq G_{0} \times{ }_{\left|G_{0}\right|} G_{0} n$-symplectic

Proposition (Calaque-Safronov)

$G_{0} n$-presymplectic groupoid, and suppose we know G_{1} is n-symplectic. TFAE:

1. $\gamma_{0}: * \leftarrow G_{0} \rightarrow G_{1}$ is non-degenerate (i.e. Lagrangian),
2. $\gamma_{2}: G_{1}^{2} \leftarrow G_{2} \rightarrow G_{1}$ is non-degenerate,
3. all the γ_{k} are non-degenerate.
