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Algebraic symplectic structures and the cotangent complex

“Smooth” symplectic structure: non-degenerate section of vector bundle 4> (X) c N2Q%
If X is not smooth, Q} is not a vector bundle.
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Algebraic symplectic structures and the cotangent complex

“Smooth” symplectic structure: non-degenerate section of vector bundle 4> (X) c N2Q%
If X is not smooth, Q} is not a vector bundle. Why?

> Answer in the cotangent complex Lx.

‘Algebraic” singularity: X ={f =---=f, =0} C A

=il 0
Lx = [J\f}(///_\n LN Q}\nlx] where J\f;(///_\m, = .J/52, .F ideal generated by fi,...,f,
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“Smooth” symplectic structure: non-degenerate section of vector bundle 4> (X) c N2Q%
If X is not smooth, Q} is not a vector bundle. Why?

> Answer in the cotangent complex Lx.

‘Algebraic” singularity: X ={f =---=f, =0} C A

=il 0
Lx = [J\f}(///_\n LN Q}\nlx] where J\f;(///_\m, = .J/52, .F ideal generated by fi,...,f,
Also Ly /an = Nx//v [1] — Notation NY = Lx[—1]
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Algebraic symplectic structures and the cotangent complex

“Smooth” symplectic structure: non-degenerate section of vector bundle 4> (X) c N2Q%
If X is not smooth, Q} is not a vector bundle. Why?

> Answer in the cotangent complex Lx.

‘Algebraic” singularity: X ={f =---=f, =0} C A

=il 0
Lx = [J\f}(///_\n LN Q}\nlx] where J\f;(///_\m, = .J/52, .F ideal generated by fi,...,f,

Also Ly /an = Nx//v [1] — Notation N}{ = Lx[-1]

Orbisingularity: X =[V/G]

0 1
Ly = 0L % gV ®6y] (Remark: QCol(X) = QCok(V)C)

David Kern (KTH) Shifted cotangent groupoids 26th October 2023 2/25



Algebraic symplectic structures and the cotangent complex

“Smooth” symplectic structure: non-degenerate section of vector bundle 4> (X) c N2Q%
If X is not smooth, Q} is not a vector bundle. Why?

> Answer in the cotangent complex Lx.

‘Algebraic” singularity: X ={f =---=f, =0} C A

=il 0
Lx = [J\f}(///_\n i> Q}MIX] where J\f;(///_\n = j/jz, J ideal generated by fi,...,f;

Also Ly /an = NX/A,, [1] — Notation N}{ = Lx[-1]

Orbisingularity: X =[V/G]

0 1
Ly = 0L % gV ®6y] (Remark: QCoh(X) = QCok(V)C)

Note: In both cases, Lx is a finite complex of vector bundles, aka a perfect complex.
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Derived schemes

Upshot: Symplectic forms in singular settings should “live in” T(A2Lx).
How do we make it natural?
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Derived schemes

Upshot: Symplectic forms in singular settings should “live in” T(A2Lx).
How do we make it natural?

> X = Spec R with R an algebra in Nobdc, and Q%(,x € Muobdc for any x: SpecC — X

> Lxx € Ch(C) = dNodc: derived (co-)category (In fact bTod = Chlqis—1])

How to reconcile the two?
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Derived schemes

Upshot: Symplectic forms in singular settings should “live in” T(A2Lx).
How do we make it natural?

» X = SpecR with R an algebra in Nobdc, and Q%(,x € Muobdc for any x: SpecC — X

loc.

> Lxx € Ch(C) = dMobdc: derived (co-)category (In fact HMTod = Chlqis ')
How to reconcile the two?
—> View R as a particular case of algebra in dMod¢

Definition
<0

dAlge = fbgaéo[qlsfl}: oo-category of commutative algebras in dNlod>
dDAfEc = dALg’ and derived schemes are locally derived affines
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Symplectic forms redux

X a derived scheme (or stack). #2(X,0) := I'(X,A\°Lx)
Remark
NLx = Sym?(Lx[1))[~2]

Indeed, by antisymmetry of odd degrees, Sym®*(M[1]) = @ (/\"M)[n]
n>0
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Symplectic forms redux

X a derived scheme (or stack). #2(X,0) := I'(X,A\°Lx)

Remark

NLx = Sym?(Lx[1])[-2]
Indeed, by antisymmetry of odd degrees, Sym®*(M[1]) = @ (/\"M)[n]

n>0

New phenomenon for derived modules: we can shift them!

Definition (n-shifted 2-forms)
d2(X, n) = T (X, (A2Lx)[n)) = (X, Sym?(Lx[1])[n —2])
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Symplectic forms redux

X a derived scheme (or stack). #2(X,0) := I'(X,A\°Lx)

Remark
Ny = ng2([l_x[1] )[—2]

Indeed, by antisymmetry of odd degrees, Sym®*(M[1]) = @ (/\"M)[n]
n>0

New phenomenon for derived modules: we can shift them!

Definition (n-shifted 2-forms)

?(X,n) =T (X, (A2Lx)[n]) = I(X, Sym?(Lx[1])[n — 2])

Closed n-shifted 2-forms =: n-shifted presymplectic forms

&12’CI(X, n) = {wo € &12()(, n) + key dgr wo = d wi,dgr w1 = d wy,

o} d?(Xn)
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Examples

wo: Ox — Lx ALx[n] an n-shifted 2-form is non-degenerate if w%: Ty = I]_)v( = Lxlnl:
exhibit symmetry of the cotangent complex
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Examples

wp: Ox — Lx A\ Lx[n] an n-shifted 2-form is non-degenerate if w%: Ty = l]_)v< = Lxlnl:
exhibit symmetry of the cotangent complex

Derived critical loci are (—1)-shifted symplectic

i Hess(f)
R Cl’llt(f) — Idde Ly = [TY ess T’\,/]
Hess(f)V
y — % L 71Vy Tx = [(TY)V] —— T
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Examples

wp: Ox — Lx A\ Lx[n] an n-shifted 2-form is non-degenerate if w%: Ty = l]_)v< = Lxlnl:

exhibit symmetry of the cotangent complex

Derived critical loci are (—1)-shifted symplectic

R Crit(f) —— Y Ly = [TY Hess(f
! ldar
y —% TVy Tx =

Tyl

Hess(f)"
(7)) 2 7y

B G is 2-shifted symplectic

Lgc =gV [—1], whence wq € T(B G, A\%Lg ¢)[2] = Sym?(gV)C is the Killing form
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Examples

wp: Ox — Lx A\ Lx[n] an n-shifted 2-form is non-degenerate if w%: Ty = l]_)v< = Lxlnl:

exhibit symmetry of the cotangent complex

Derived critical loci are (—1)-shifted symplectic

i Hess(f)
R Cl’llt(f) — Idde Ly = [TY ess T’\,/]
Hess(f)V
y — % L 71Vy Tx = [(TY)V] —— T

B G is 2-shifted symplectic
Lgc =gV [—1], whence wq € T(B G, A\%Lg ¢)[2] = Sym?(gV)C is the Killing form

Shifted cotangent stacks are shifted symplectic (Calaque)
TY[nlY = Vy(Lyl[n]) total space of Ly[n]Y, with wy = dgr 0, 8 soldering form
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Yonedark magic

Lemma (Pantev—Toén—Vaquié—Vezzosi)

DAFEC 3 R — o> (Spec R, n) satisfies étale descent, i.e. it is a sheaf/stack: “moduli stack
of n-shifted presymplectic forms” %< (—, n).
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Yonedark magic

Lemma (Pantev—Toén—Vaquié—Vezzosi)

DAFEC 3 R — o> (Spec R, n) satisfies étale descent, i.e. it is a sheaf/stack: “moduli stack
of n-shifted presymplectic forms” %< (—, n).

Corollary (Pantev—Toén—Vaquié—Vezzosi)

For any derived stack X,
A>Y(X, n) ~ hom(X, 4>%(—, n))

Consequence: The oco-category of n-shifted presymplectic derived stacks is a (slice) co-topos
Dqump(n) = ﬁSt/mz,cl(,’n)

Symp(n) is the full subcategory of 85t y2.a(_ ,) on the non-degenerate forms: in practice,
work in dSt /g2.a(_ ) and then check non-degeneracy.

—,n
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Lagrangian correspondences

(Pre-)Lagrangian structures

Isotropic structure on f: Y — X
relative to w € A><(X, n):
trivialisation F*w = 0 in 42°(Y, n)

David Kern (KTH) Shifted cotangent groupoids

26th October 2023

7125



Lagrangian correspondences

Pulling back presymplectic forms

Twl: X — d>(—, n) (pre)symplectic, f: Y — X. Then Tf*w™: Y fx ey A2 (—, n)

(Pre-)Lagrangian structures

Isotropic structure on f: Y — X Y
relative to w € A><(X, n): l
trivialisation F*w = 0 in 42 (Y, n) :
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Lagrangian correspondences

Pulling back presymplectic forms

Twl: X — d>(—, n) (pre)symplectic, f: Y — X. Then Tf*w™: Y fx ey A2 (—, n)

(Pre-)Lagrangian structures

Isotropic structure on f: Y — X

Y correspondence
relative to w € A><(X, n): l
*

Twl = (*)O) — (X,(,U)

trivialisation f*w = 0 in A2<(Y, n) d2el(— ) in Span(dSt /g2.a(p)

/ i \
— Lagrangian corresp. (Y - (X,w)is Y J X nondegen.
grang p. (Y,¥) = (X,w) ~ o g
gﬂ2’d(—)n)
David Kern (KTH)

Shifted cotangent groupoids 26th October 2023 7125




Shifting phenomena in symplectic geometry

Delooping (Calaque) J

A Lagrangian structure on X — (*,!w(,41)) is an n-symplectic structure on X
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Shifting phenomena in symplectic geometry

Delooping (Calaque)

A Lagrangian structure on X — (*,!w(,41)) is an n-symplectic structure on X

Lagrangian intersections (Pantev—Toén—Vaquié—Vezzosi)

L1 X X L2 — L1
l - lLagr. with X n-symplectic = L xx Ly is (n— 1)-symplectic
Ly Lagr. X

Ex.: Recover derived critical loci: 0,dqr f: V — TY[n]V Lagrangian
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Shifting phenomena in symplectic geometry

Delooping (Calaque)

A Lagrangian structure on X — (*,!w(,41)) is an n-symplectic structure on X

Lagrangian intersections (Pantev—Toén—Vaquié—Vezzosi)

L1 X X L2 — L1
l - lLagr. with X n-symplectic = L xx Ly is (n— 1)-symplectic
Ly Lagr. X

Ex.: Recover derived critical loci: 0,dqr f: V — TY[n]V Lagrangian

Quotients of symplectic groupoids (Calaque—Safronov)

Ge n-shifted symplectic groupoid = |G| (n + 1)-symplectic stack
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Contents - Section 2: Shifted symplectic groupoids

@ Shifted symplectic groupoids
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Atlases and groupoids for algebraic derived stacks
An n-Artin derived stack X admits an atlas @: U — X where

» U is a union of affine derived schemes,
> @© is smooth with (n — 1)-Artin fibres.
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Atlases and groupoids for algebraic derived stacks

An n-Artin derived stack X admits an atlas @: U — X where
» U is a union of affine derived schemes,
> @© is smooth with (n — 1)-Artin fibres.

Taking the kernel (aka nerve) of the surjection @: get a groupoid G, (in dSt)

—
GQZUXXUXXU%GleXXU%GozU

where:

» G; is a union of (n— 1)-Artin stacks

» Gir 1 — Gjis smooth with (n — 1)-Artin fibres
and X = |G| = ci'u)n Ge
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Groupoids in general

Notation: For f: [k] — [n] in A, write X, — X(r(1),....r(k)} = Xk

yoo

Internal categories

A category object in an co-category C is a simplicial object Xo: A°® — € such that the

Segal cone (X, — X ip1v = X1,_._ exhibits X, =X x -+ x Xp
g { n {i,i+1} }oglgn n do, Xo,d1 do,Xo,d1
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Groupoids in general

Notation: For f: [k] = [n] in A, write X, — Xif(),... Fk) = Xk

yoo

Internal categories
A category object in an co-category C is a simplicial object Xo: A°® — € such that the

Segal cone (X, — X ip1v = X1,_._ exhibits X, =X x -+ x Xp
g { n {i,i+1} }oglgn n do, Xo,d4 do, Xo,d1

X is further a groupoid object if, equivalently:

» Unordered Segal decomposition(s): X = Xi0,1} X>< Xi0,2y and Xp = X1,2) X>< Xi0,2}
{0} {2}

> Compatible Se11-actions (in fact only need the sub-C,41-actions)
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Groupoids in general

Notation: For f: [k] = [n] in A, write X, — Xif(),... Fk) = Xk

yoo

Internal categories

A category object in an co-category C is a simplicial object Xo: A°® — € such that the

Segal cone (X, — X ip1v = X1,_._ exhibits X, =X x -+ x Xp
g { n {i,i+1} }oglgn n do, Xo,d4 do, Xo,d1

X is further a groupoid object if, equivalently:

» Unordered Segal decomposition(s): X = X0,1) X Xio,2) and Xa = Xi1,2) X X0,2)
) X{O} ) ) X{2} )
> Compatible Se11-actions (in fact only need the sub-C,41-actions)

A monoid in € ~~ internal category Bare A with Bar, A = A".
Groupoid iff A is a group.
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Shifted symplectic groupoids

> (n) abelian group = groupoid Bar, 4>(n) in dSt.

Definition (Shifted presymplectic groupoid)
An n-shifted symplectic groupoid is a groupoid G, in dSt over Bar, 4% (n) J
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Shifted symplectic groupoids

> (n) abelian group = groupoid Bar, 4>(n) in dSt. ]

Definition (Shifted presymplectic groupoid)

An n-shifted symplectic groupoid is a groupoid G, in dSt over Bar, 4% (n)

Consequences

F017,...,7 07 .
- K A>(n)k «rs k n-symplectic structures 8; on Gy

> Isotropic correspondence yy: Gf < Gy — Gy

> For any k, map Gi (

Ge is n-symplectic if the v, are Lagrangian correspondences
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Symplectic presentations

Proposition (Calaque—Safronov)

An n-presymplectic structure we on G, induces an (n + 1)-shifted isotropic structure on
Go — |Gsl. It is Lagrangian (in part. |G| is (n 4 1)-symplectic) iff w, is symplectic.
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Symplectic presentations

Proposition (Calaque—Safronov)

An n-presymplectic structure we on G, induces an (n + 1)-shifted isotropic structure on
Go — |Gsl. It is Lagrangian (in part. |G| is (n 4 1)-symplectic) iff w, is symplectic.

Theorem (Calaque-K.)

X = |G,| derived Artin stack with atlas G,. Then T [n+ 1]X admits a presentation by a
symplectic groupoid given in level k by

NYInl (Gk = G = Gpo1y X -+ X Gpe—1,69 X Gpo,y)
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Symplectic presentations

Proposition (Calaque—Safronov)

An n-presymplectic structure we on G, induces an (n + 1)-shifted isotropic structure on
Go — |Gsl. It is Lagrangian (in part. |G| is (n 4 1)-symplectic) iff w, is symplectic.

Theorem (Calaque-K.)

X = |G,| derived Artin stack with atlas G,. Then T [n+ 1]X admits a presentation by a
symplectic groupoid given in level k by

NYInl (Gk = G = Gpo1y X -+ X Gpe—1,69 X Gpo,y)

For B G = |Bar, G|

NV [n](GK — Gk x G) ~ (TV[n]G) x¢ G¥ = V(g [n] ® Ogk): quotient by adjoint G-action
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First ingredient: functoriality of cotangent bundles

f: Y — X morphism of Artin derived stacks: there is a Lagrangian correspondence

T\/[n]X XX Y
TVInY TVInlX.
V
Upshot: oo-functor I : St LA LagCorr(n) C Span(dSt /g2.a(y)
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First ingredient: functoriality of cotangent bundles
f: Y — X morphism of Artin derived stacks: there is a Lagrangian correspondence

(X xx Y NY[nl(Y/X xY)

/\

TVInY TVInX.

More generally, for any span Y & 7 5 X of Artin derived stacks, Lagrangian

n(Z/X x Y)

/\

TVInY TVInX.

(TV[n),NY[n]

Upshot: co-functor 7 : Span(dSt) % LagCorr(n) C Span(dSt /g2.ay)
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Groupoids and algebras in spans

Problem: I has no reason to send a groupoid in 45t to a groupoid in dSt /2. (py-

If I does not preserve groupoids in arrows, what does it preserve?
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Groupoids and algebras in spans

Problem: I has no reason to send a groupoid in 45t to a groupoid in dSt /2. (py-

If I does not preserve groupoids in arrows, what does it preserve?

Remark:
1. For any € with limits, Span(C) has a monoidal structure “x” by C*x"D = C x D
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Groupoids and algebras in spans

Problem: I has no reason to send a groupoid in 45t to a groupoid in dSt /2. (py-

If I does not preserve groupoids in arrows, what does it preserve?

Remark:
1. For any € with limits, Span(C) has a monoidal structure “x” by C*x"D = C x D
2. It (M, +) is a monoid in €, monoidal structure on Span(C /) with

C D CxD
Hﬂ =] \\\\ fBHg
f g fxg ~
| (NG
M M M x M — M

Our T is a monoidal functor Span(bSt)™>" — LagCorr(n)®
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Contents - Section 3: Calabi—Yau monads and correspondences

© Calabi-Yau monads and correspondences
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Groupoids as algebras in spans

Xo category object in €
~+ X1 is an algebra in Span(C) with

Xo
P unit given by / X‘JJ
* X1
o d
» multiplication / \

X1 X Xl — X1 X Xo X1 X{0)2} = X1
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Groupoids as algebras in spans

Xo category object in €
~+ X1 is an algebra in Span(C) with

Xo
P unit given by / X‘JJ
* X1
o d
» multiplication / \

X1 X Xl — X1 X Xo X1 X{0)2} = X1

X, groupoid: cyclic actions T: X,41 — Xn41 give Calabi—Yau (aka Frobenius) structure
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Groupoids as algebras in spans

Xo category object in €
~+ X1 is an algebra in Span(C) with

Xo
P unit given by / X‘JJ
* X1
o d
» multiplication / \

X1 X Xl — X1 X Xo X1 X{0)2} = X1
X, groupoid: cyclic actions T: X,41 — Xn41 give Calabi—Yau (aka Frobenius) structure

Problem: Not all (CY) algebras arise this way: isn't always an iso
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2-Segal objects

Definition
A 2-Segal object in € is Xo: A®® — € such that for any N > 3,

Xn = Xio,1,2y X «oo o X Xioyn—2,n-1) . X Xio,n—1,n
X2 Xon—2) [0,n1)

and

Xn = X{O,l,n} X e X X{nf3,nf2,n} X X{n72,nfl,n}
Xm Xin—3,m) (n—2,n)
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2-Segal objects

Definition
A 2-Segal object in € is Xo: A®® — € such that for any N > 3,

Xn — X{0)1)2} X oo X X{O,n—2,n—1} X X{O,n—l,n}
X2y Xjo,n—2} X(0,n—1)
and
Xn = X{O,l,n} X e X X{nf3,nf2,n} X X{n72,nfl,n}
Xy Xin-3,n) Xin—2,n}
For N =3

—

/1

—

-1 I

I\
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The algebra of 2-Segal objects

Theorem (Penney, Gal-Gal, Stern)

There is an equivalence of co-categories between (cyclic) 2-Segal objects in € and (CY)
algebras in Span(C).
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The algebra of 2-Segal objects

Theorem (Penney, Gal-Gal, Stern)

There is an equivalence of co-categories between (cyclic) 2-Segal objects in € and (CY)
algebras in Span(C).

Lemma (Calaque-K.)

do)
For any cyclic 2-Segal X,, the 1-Segal map X; % X(0,1} XX, X(1,2) admits a section.

Proof.

S1><50(T 0sp) (d2,db)
Vi Xo,13 XX, X1,20 — > X[0,1,3} X X3 X(1,2,3} —> X10,1,2,3} &, X0,1,2}
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The algebra of 2-Segal objects

Theorem (Penney, Gal-Gal, Stern)

There is an equivalence of co-categories between (cyclic) 2-Segal objects in € and (CY)
algebras in Span(C).

Lemma (Calaque-K))

do)
For any cyclic 2-Segal X,, the 1-Segal map X; % X(0,1} XX, X(1,2) admits a section.

Proof.

S1><SO(T 0sp) (do,do)
Vi Xo,13 XX, X1,20 — > X[0,1,3} X X3 X(1,2,3} —> X10,1,2,3} &, Xi0,1,2)

(0%1,1&2) - i?l /l — zgﬁagk} O

26th October 2023 19/25
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Refining the algebra structure

v section of (db, dp) = X, is 1-Seqal iff y o (do, dp) = idx,
Problem: 1-Segal condition is X; XX, X1 & X, but algebra only knows Xj x Xj < X5
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Refining the algebra structure

v section of (db, dp) = X, is 1-Seqal iff y o (do, dp) = idx,
Problem: 1-Segal condition is X; XX, X1 & X, but algebra only knows Xj x Xj < X5

~+ Replace monoidal structure “x” by X
do,Xo,d1

Requires: know that Xj lives over Xi, in two different ways di, do

David Kern (KTH) Shifted cotangent groupoids 26th October 2023 20/25



Refining the algebra structure

v section of (db, dp) = X, is 1-Seqal iff y o (do, dp) = idx,

Problem: 1-Segal condition is X; XX, X1 & X, but algebra only knows Xj x Xj < X5

~» Replace monoidal structure “x” by  x
do,Xo,d1
Requires: know that Xj lives over Xi, in two different ways di, do

~» Composition in an (oo, 2)-category (rather, double co-category) where
Xo < X1 — Xp are l-arrows

Double co-category Span; (bSt) of spans

XO < Xl X(I) X]_ XX(S X]/_
Xi
/ N\
/

X Xy

o /
Composition X1
N
Xo

Yg < Yl Yé

David Kern (KTH) Shifted cotangent groupoids 26th October 2023 20/25



Refining the algebra structure

v section of (db, dp) = X, is 1-Seqal iff y o (do, dp) = idx,

Problem: 1-Segal condition is X; XX, X1 & X, but algebra only knows Xj x Xj < X5

~» Replace monoidal structure “x” by  x
dO)XOydl
Requires: know that Xj lives over Xi, in two different ways di, do

~» Composition in an (oo, 2)-category (rather, double oo-category) where
Xo + X1 — Xo are 1l-arrows and spans are the 2-arrows

Double co-category Spamn,(dSt) of iterated spans

5 % X X1 x5 X

T T 7 Y

Zo < 7 > Zb Composition X1 Xi

1 1 \J X < \‘ X! ‘/ ™ X!
Yg < Yl Yé 0 0 0
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Monads in double categories

A monad in a double co-category R is: horizontal endomorphism Xj £ Xo with cells

idx,

Xo — Xo X() ﬁ) Xo
H Un H and H ﬂ“ H associative and unital
Xo *t> Xo XO 4t> XO

— = monoid in hom""(Xy, Xp)

Theorem (Dyckerhoff-Kapranov)
Every 2-Segal object X, in € gives rise to a monad H(X,) in Span,(C)
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Triple co-category of iterated spans

Questions
1. What about going back, from algebras in spans to 2-Segal objects?
2. How to understand the 1-Segal condition?
3. What about morphisms?
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Triple co-category of iterated spans

Questions
1. What about going back, from algebras in spans to 2-Segal objects?
2. How to understand the 1-Segal condition?
3. What about morphisms?

The triple co-category Span, (bSt)

Now 3 directions for T\ \ \

arrows: horizontal, vertical, transversal —5.

cells: horizontal, vertical, basic J\T T T

+ cubes (maps between iterated spans) A

NN

6 —— ¢
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Triple co-category of iterated spans

Questions
1. What about going back, from algebras in spans to 2-Segal objects?
2. How to understand the 1-Segal condition?
3. What about morphisms?

The triple co-category Span, (bSt)

Now 3 directions for T\ \ \

arrows: horizontal, vertical, transversal

cells: horizontal, vertical, basic J\T T

+ cubes (maps between iterated spans)

e — .

— Basic monads recover the Theorem \J( J'

David Kern (KTH Shifted cotangent groupoids
gent group

e s ——% ¢

26th October 2023
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The joys of companionship

Companion pairs in Spamn; (dSt)

A+~ C — B

[ [ [
The basic cell A« C— B

£l 1h ls
X+—7Z—Y
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The joys of companionship

Companion pairs in Spamn; (dSt)

A+— C— B
The basi l H : I h terised ion t A B &
e basic ce s characterised as companion to
A+ C—B ! ¢ pant f\« NG N
£l 1h ls X+—7Z—Y
X+—7Z—Y

Universal characterisation (adjunction-style)
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The joys of companionship

Companion pairs in Spamn; (dSt)

A«— C— B
Thb'll|| : ||’ht'd 'tAHCHBg
e basic ce is characterised as companion to
A«+— C— B pant AN NG N
£l 1h ls X+—7Z—Y
X+—27Z—Y
Universal characterisation (adjunction-style)
First consequence
Xo — Xo — Xo
[ [ [
Unit cell of H(X,) is: Xo = Xo = X, ~~ must be a companion
[ o |
Xo — X1 — Xo
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Companion cells and the 1-Segal condition

Observation

Considering only the companion (basic) cells in Span, (C€) recovers Span; (C)
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Companion cells and the 1-Segal condition

Observation
Considering only the companion (basic) cells in Spanj (€) recovers Span; (C)

Corollary |

Gregarious monads (structure cells are companions) in Span, () are monads in Span; (C)
(Note: gregarious in Spany (C) <= 1-Segal condition):

XOZX():XO X0<—X1XXOX1*>XO
| | | | T |
Xo = Xo =— Xo Xo Xo Xo
| ol 1 la i
XO — X1 — Xo XO X1 XO

David Kern (KTH) Shifted cotangent groupoids 26th October 2023 24/25



Companion cells and the 1-Segal condition

Observation

Considering only the companion (basic) cells in Spanj (C€) recovers Span; (C)

Corollary

Gregarious monads (structure cells are companions) in Span; () are monads in Span; (C)
(Note: gregarious in Spany (C) <= 1-Segal condition)

Lemma (Haugseng)

Monads in Span; (C) are categories in €

Likewise: CY monads in Spanj (C) are cyclic 2-Segal objects, and groupoids iff the
structure cells are companions (i.e. satisfy 1-Segal)
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Orthomorphisms and isotropic structures

An orthomorphism of (basic) monads is a transversal morphism between them

Xo— T xT— X

Xo
\ Y@\
Xo Yo+—SxS5S— Y
Yo
N1

Yo(*}ls%Yg

I T

Y0<75*>Y0
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Orthomorphisms and isotropic structures
An orthomorphism of (basic) monads is a transversal morphism between them
Proposition

Orthomorphisms between (CY) monads in Spanj (C) correspond to morphisms between
(cyclic) 2-Segal objects: equivalence mnb(iY(S[pa[rn;r((E)) ~ Z—SEQSI(@)
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Orthomorphisms and isotropic structures

An orthomorphism of (basic) monads is a transversal morphism between them
Proposition

Orthomorphisms between (CY) monads in Spanj (C) correspond to morphisms between
(cyclic) 2-Segal objects: equivalence mnb(iY(S[pa[rn;r((E)) ~ 2—52951(@)

Lemma

For any monoid A in €, equivalence mnbE_Y(Span;r((E/A)) = mnbf_y(gpan;((ﬁ))/;\

Taking A = s®%(n), get: n-shifted isotropic groupoids ~ mnbiY’gr'(Span;(bﬁ‘)t/&qz,d(n)))
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Orthomorphisms and isotropic structures

An orthomorphism of (basic) monads is a transversal morphism between them
Proposition

Orthomorphisms between (CY) monads in Spanj (C) correspond to morphisms between
(cyclic) 2-Segal objects: equivalence mnb(iY(S[pa[rn;r((E)) ~ 2—52951(@)

Lemma

For any monoid A in €, equivalence mnbE_Y(Span;r((E/A)) = mnbf_y(gpan;((ﬁ))/;\

Taking A = s®%(n), get: n-shifted isotropic groupoids ~ mnbiY’gr'(Span;(bﬁ‘)t/&qz,d(n)))

Conclusion: Grpd(dSt) =~ mnbiy’gr'(Sparrn;(bSt)) j(T\/[n],Nv[n])

L Mud "9 (Spang (DSt /gaa(n)) = Grpd(dSt) / gar, a2 (n)
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Backup
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Shifting and delooping for presymplectic forms

Lemma (looping-delooping)

Qo> n+1):=% x x~d>%n), and conversely Bar, A2 (n) presents 4> (n+ 1)
Sﬂ2vd(n+1)
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Shifting and delooping for presymplectic forms

Lemma (looping-delooping)

Qo> n+1):=% x x~d>%n), and conversely Bar, A2 (n) presents 4> (n+ 1)
Sﬂ2vd(n+1)

Corollary

Ge n-shifted presymplectic groupoid = (n + 1)-shifted isotropic Gy — |G|
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Shifting and delooping for presymplectic forms

Lemma (looping-delooping)

Qo> n+1):=% x x~d>%n), and conversely Bar, A2 (n) presents 4> (n+ 1)
Sﬂ2vd(n+1)

Corollary
Ge n-shifted presymplectic groupoid = (n + 1)-shifted isotropic Gy — |G|

Fact: “Quotient” cﬂn: CA” = Ar(C) = ¢ is left-adjoint to kery: Ar(C) — CA”
Observation: kere(* — 9% (n+ 1)) ~ Bare 4%(n)
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Shifting and delooping for presymplectic forms

Lemma (looping-delooping)

Qo> n+1):=% x x~d>%n), and conversely Bar, A2 (n) presents 4> (n+ 1)
sﬂ2»d(n+l)

Corollary

Ge n-shifted presymplectic groupoid = (n + 1)-shifted isotropic Gy — |G|

Fact: “Quotient” cﬂn: CA” = Ar(C) = ¢ is left-adjoint to kery: Ar(C) — CA”
Observation: kere(* — 9% (n+ 1)) ~ Bare 4%(n)

— G, — Bare %% (n) corresponds
to morphism of quotient maps
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Non-degeneracy for isotropic correspondences

Classical Lagrangians
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Non-degeneracy for isotropic correspondences

Classical Lagrangians

For shifted isotropic correspondences

L—f o x T, ——— *Tx ~ f*Lx[n]

gl l Lagrangian if l

l cocartesian
Y — &ﬁz’d(n)

-
g*'Ty ~g*Ly[n] ——— L;[n]
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Link with classical symplectic groupoids

Lemma (Calaque—Safronov)

Ge n-shifted symplectic groupoid. Then the n-presymplectic structure on G is symplectic.

Proof.

Go — |Ge| n-Lagrangian = Gi ~ Gop x|g,| Go n-symplectic O
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Link with classical symplectic groupoids

Lemma (Calaque—Safronov)

Ge n-shifted symplectic groupoid. Then the n-presymplectic structure on G is symplectic.

Proof.

Go — |Ge| n-Lagrangian = Gi ~ Gop x|g,| Go n-symplectic O

Proposition (Calaque—Safronov)

Ge n-presymplectic groupoid, and suppose we know G; is n-symplectic. TFAE:
1. vo: * < Gop — Gy is non-degenerate (i.e. Lagrangian),
2. Yo: G12 + Gy — Gj is non-degenerate,
3. all the y, are non-degenerate.
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