Symmetric 2-Segal conditions for shifted cotangent groupoids

David Kern Joint with Damien Calaque

Kunliga Tekniska Högskolan

Uppsala Universitet Geometry and Topology seminar 26th October 2023

Contents - Section 1: Shifted cotangent bundles

Shifted cotangent bundles

2 Shifted symplectic groupoids

3 Calabi-Yau monads and correspondences

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2,\mathrm{cl}}(X) \subset \wedge^2 \Omega^1_X$ If X is not smooth, Ω^1_X is not a vector bundle.

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2,\mathrm{cl}}(X) \subset \wedge^2 \Omega^1_X$ If X is not smooth, Ω^1_X is not a vector bundle. Why?

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2,\mathrm{cl}}(X) \subset \wedge^2 \Omega^1_X$ If X is not smooth, Ω^1_X is not a vector bundle. Why?

• Answer in the cotangent complex \mathbb{L}_X .

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2,\mathrm{cl}}(X) \subset \wedge^2 \Omega^1_X$ If X is not smooth, Ω^1_X is not a vector bundle. Why?

• Answer in the cotangent complex \mathbb{L}_X .

"Algebraic" singularity: $X = \{f_1 = \cdots = f_r = 0\} \subset \mathbb{A}^n_{\mathbb{C}}$

$$\mathbb{L}_X = ig[\mathcal{N}_{X/\mathbb{A}^n}^{\bigtriangledown} \stackrel{\mathrm{d}}{ o} \Omega_{\mathbb{A}^n}^1|_Xig]$$
 where $\mathcal{N}_{X/\mathbb{A}^n}^{\lor} = \mathcal{F}/\mathcal{F}^2$, \mathcal{F} ideal generated by f_1, \ldots, f_r

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2,\mathrm{cl}}(X) \subset \wedge^2 \Omega^1_X$ If X is not smooth, Ω^1_X is not a vector bundle. Why?

• Answer in the cotangent complex \mathbb{L}_X .

"Algebraic" singularity: $X = \{f_1 = \dots = f_r = 0\} \subset \mathbb{A}^n_{\mathbb{C}}$ $\mathbb{L}_X = \begin{bmatrix} \mathcal{N}^{-1}_{X/\mathbb{A}^n} \stackrel{d}{\to} \Omega^{1}_{\mathbb{A}^n} |_X \end{bmatrix}$ where $\mathcal{N}^{\vee}_{X/\mathbb{A}^n} = \mathcal{F}/\mathcal{F}^2$, \mathcal{F} ideal generated by f_1, \dots, f_r Also $\mathbb{L}_{X/\mathbb{A}^n} = \mathcal{N}^{\vee}_{X/\mathbb{A}^n}[1] \implies$ Notation $\mathbb{N}^{\vee}_X \coloneqq \mathbb{L}_X[-1]$

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2,\mathrm{cl}}(X) \subset \wedge^2 \Omega^1_X$ If X is not smooth, Ω^1_X is not a vector bundle. Why?

• Answer in the cotangent complex \mathbb{L}_X .

"Algebraic" singularity:
$$X = \{f_1 = \dots = f_r = 0\} \subset \mathbb{A}^n_{\mathbb{C}}$$

 $\mathbb{L}_X = \begin{bmatrix} \mathcal{N}_{X/\mathbb{A}^n}^{\smile} \stackrel{d}{\to} \Omega^1_{\mathbb{A}^n} |_X \end{bmatrix}$ where $\mathcal{N}_{X/\mathbb{A}^n}^{\lor} = \mathcal{F}/\mathcal{F}^2$, \mathcal{F} ideal generated by f_1, \dots, f_r
Also $\mathbb{L}_{X/\mathbb{A}^n} = \mathcal{N}_{X/\mathbb{A}^n}^{\lor}[1] \implies \text{Notation } \mathbb{N}_X^{\lor} \coloneqq \mathbb{L}_X[-1]$

Orbisingularity: X = [V/G] $\mathbb{L}_X = \begin{bmatrix} \Omega_V^1 \stackrel{d}{\to} \mathfrak{g}^{\vee} \stackrel{1}{\otimes} \mathfrak{G}_V \end{bmatrix} \qquad (\text{Remark: } \mathfrak{QCoh}(X) = \mathfrak{QCoh}(V)^G)$

"Smooth" symplectic structure: non-degenerate section of vector bundle $\mathscr{A}^{2,\mathrm{cl}}(X) \subset \wedge^2 \Omega^1_X$ If X is not smooth, Ω^1_X is not a vector bundle. Why?

• Answer in the cotangent complex \mathbb{L}_X .

"Algebraic" singularity:
$$X = \{f_1 = \dots = f_r = 0\} \subset \mathbb{A}^n_{\mathbb{C}}$$

 $\mathbb{L}_X = \begin{bmatrix} \mathcal{N}_{X/\mathbb{A}^n}^{\bigvee} \stackrel{d}{\to} \Omega^1_{\mathbb{A}^n} |_X \end{bmatrix}$ where $\mathcal{N}_{X/\mathbb{A}^n}^{\vee} = \mathcal{F}/\mathcal{F}^2$, \mathcal{F} ideal generated by f_1, \dots, f_r
Also $\mathbb{L}_{X/\mathbb{A}^n} = \mathcal{N}_{X/\mathbb{A}^n}^{\vee}[1] \implies$ Notation $\mathbb{N}_X^{\vee} \coloneqq \mathbb{L}_X[-1]$

Orbisingularity:
$$X = [V/G]$$

$$\mathbb{L}_X = \begin{bmatrix} 0 \\ \Omega_V^1 \xrightarrow{d} \mathfrak{g}^{\vee} \otimes \mathfrak{O}_V \end{bmatrix} \qquad (\text{Remark: } \mathfrak{QCoh}(X) = \mathfrak{QCoh}(V)^G)$$

Note: In both cases, \mathbb{L}_X is a finite complex of vector bundles, aka a perfect complex.

David KERN (KTH)

Derived schemes

Upshot: Symplectic forms in singular settings should "live in" $\Gamma(\wedge^2 \mathbb{L}_X)$. How do we make it natural? Upshot: Symplectic forms in singular settings should "live in" $\Gamma(\wedge^2 \mathbb{L}_X)$. How do we make it natural?

- $X = \operatorname{Spec} R$ with R an algebra in $\operatorname{Mod}_{\mathbb{C}}$, and $\Omega^1_{X,x} \in \operatorname{Mod}_{\mathbb{C}}$ for any x: $\operatorname{Spec} \mathbb{C} \to X$
- ▶ $\mathbb{L}_{X,x} \in \mathfrak{Ch}(\mathbb{C}) \Rightarrow \mathfrak{Mod}_{\mathbb{C}}$: derived (∞-)category (In fact $\mathfrak{Mod} = \mathfrak{Ch}[qis^{-1}]$)

How to reconcile the two?

Upshot: Symplectic forms in singular settings should "live in" $\Gamma(\wedge^2 \mathbb{L}_X)$. How do we make it natural?

- $X = \operatorname{Spec} R$ with R an algebra in $\operatorname{\mathfrak{Mod}}_{\mathbb{C}}$, and $\Omega^1_{X,x} \in \operatorname{\mathfrak{Mod}}_{\mathbb{C}}$ for any x: $\operatorname{Spec} \mathbb{C} \to X$
- ▶ $\mathbb{L}_{X,x} \in \mathfrak{Ch}(\mathbb{C}) \Rightarrow \mathfrak{Mod}_{\mathbb{C}}$: derived (∞-)category (In fact $\mathfrak{Mod} = \mathfrak{Ch}[qis^{-1}]$)

How to reconcile the two?

 \implies View R as a particular case of algebra in $\mathfrak{dMod}_{\mathbb{C}}$

Definition

 $\mathfrak{dAlg}_{\mathbb{C}} \coloneqq \mathfrak{cdga}_{\mathbb{C}}^{\leqslant 0}[qis^{-1}]: \infty$ -category of commutative algebras in $\mathfrak{dMod}_{\mathbb{C}}^{\leqslant 0}$ $\mathfrak{dAff}_{\mathbb{C}} = \mathfrak{dAlg}_{\mathbb{C}}^{op}$ and derived schemes are locally derived affines

Symplectic forms redux

X a derived scheme (or stack). $\mathscr{A}^2(X,0)\coloneqq \Gamma(X,\wedge^2\mathbb{L}_X)$

Remark

$$\wedge^{2}\mathbb{L}_{X} = \operatorname{Sym}^{2}(\mathbb{L}_{X}[1])[-2]$$

Indeed, by antisymmetry of odd degrees, $\operatorname{Sym}^{\bullet}(M[1]) = \bigoplus_{n \ge 0} (\wedge^{n} M)[n]$

Symplectic forms redux

X a derived scheme (or stack). $\mathscr{A}^2(X,0)\coloneqq \Gamma(X,\wedge^2\mathbb{L}_X)$

Remark

$$\wedge^2 \mathbb{L}_X = \operatorname{Sym}^2(\mathbb{L}_X[1])[-2]$$

Indeed, by antisymmetry of odd degrees, $\operatorname{Sym}^{\bullet}(M[1]) = \bigoplus_{n \ge 0} (\wedge^n M)[n]$

New phenomenon for derived modules: we can shift them!

Definition (n-shifted 2-forms)

 $\mathscr{A}^{2}(X, n) = \Gamma\left(X, (\wedge^{2}\mathbb{L}_{X})[n]\right) = \Gamma(X, \operatorname{Sym}^{2}(\mathbb{L}_{X}[1])[n-2])$

Symplectic forms redux

X a derived scheme (or stack). $\mathscr{A}^2(X,0)\coloneqq \Gamma(X,\wedge^2\mathbb{L}_X)$

Remark

$$\wedge^2 \mathbb{L}_X = \operatorname{Sym}^2(\mathbb{L}_X[1])[-2]$$

Indeed, by antisymmetry of odd degrees, $\operatorname{Sym}^{\bullet}(M[1]) = \bigoplus_{n \ge 0} (\wedge^n M)[n]$

New phenomenon for derived modules: we can shift them!

Definition (n-shifted 2-forms)

 $\mathscr{A}^{2}(X, n) = \Gamma\left(X, (\wedge^{2}\mathbb{L}_{X})[n]\right) = \Gamma(X, \operatorname{Sym}^{2}(\mathbb{L}_{X}[1])[n-2])$

Closed *n*-shifted 2-forms \Rightarrow *n*-shifted presymplectic forms $\mathscr{A}^{2,\mathrm{cl}}(X,n) = \{\omega_0 \in \mathscr{A}^2(X,n) + \text{ key } d_{\mathrm{dR}} \omega_0 = d \omega_1, d_{\mathrm{dR}} \omega_1 = d \omega_2, \dots\} \rightarrow \mathscr{A}^2(X,n)$

 $\omega_0: \mathbb{G}_X \to \mathbb{L}_X \wedge \mathbb{L}_X[n]$ an *n*-shifted 2-form is **non-degenerate** if $\omega_0^{\flat}: \mathbb{T}_X := \mathbb{L}_X^{\vee} \xrightarrow{\simeq} \mathbb{L}_X[n]$: exhibit symmetry of the cotangent complex

 $\omega_0: \mathbb{G}_X \to \mathbb{L}_X \wedge \mathbb{L}_X[n]$ an *n*-shifted 2-form is **non-degenerate** if $\omega_0^{\flat}: \mathbb{T}_X := \mathbb{L}_X^{\vee} \xrightarrow{\simeq} \mathbb{L}_X[n]$: exhibit symmetry of the cotangent complex

Derived critical loci are (-1)-shifted symplectic

$$\begin{array}{ccc} \mathbb{R}\operatorname{Crit}(f) & \longrightarrow Y & & \\ \downarrow & & \downarrow^{\mathsf{d}_{\mathsf{dR}}f} & & \\ Y & \stackrel{0}{\longrightarrow} & T^{\vee}Y & & \\ \end{array} & \begin{array}{c} \mathbb{L}_X = \begin{bmatrix} T_Y \xrightarrow{\mathsf{Hess}(f)} & T_Y^{\vee} \end{bmatrix} \\ \mathbb{T}_X = & \begin{bmatrix} (T_Y^{\vee})^{\vee} \end{bmatrix} \xrightarrow{\mathsf{Hess}(f)^{\vee}} & T_Y^{\vee} \end{array}$$

 $\omega_0: \mathbb{G}_X \to \mathbb{L}_X \wedge \mathbb{L}_X[n]$ an *n*-shifted 2-form is **non-degenerate** if $\omega_0^{\flat}: \mathbb{T}_X := \mathbb{L}_X^{\vee} \xrightarrow{\simeq} \mathbb{L}_X[n]$: exhibit symmetry of the cotangent complex

Derived critical loci are (-1)-shifted symplectic

$$\begin{array}{ccc} \mathbb{R}\operatorname{Crit}(f) & \longrightarrow & Y \\ \downarrow & & \downarrow^{\mathsf{d}_{\mathsf{dR}}\,f} \\ Y & \stackrel{0}{\longrightarrow} & \mathcal{T}^{\vee}Y \end{array} & \mathbb{L}_{X} = \begin{bmatrix} \mathcal{T}_{Y} & \stackrel{\operatorname{Hess}(f)}{\longrightarrow} & \mathcal{T}_{Y}^{\vee} \end{bmatrix} \\ \begin{bmatrix} (\mathcal{T}_{Y}^{\vee})^{\vee} \end{bmatrix} & \stackrel{\operatorname{Hess}(f)^{\vee}}{\longrightarrow} & \mathcal{T}_{Y}^{\vee} \end{array}$$

\mathcal{B} *G* is 2-shifted symplectic

 $\mathbb{L}_{\mathcal{B}\,G}=\mathfrak{g}^{\vee}[-1]\text{, whence }\omega_0\in\Gamma(\mathcal{B}\,G,\wedge^2\mathbb{L}_{\mathcal{B}\,G})[2]=\text{Sym}^2(\mathfrak{g}^{\vee})^{\,G}\text{ is the Killing form}$

 $\omega_0: \mathbb{G}_X \to \mathbb{L}_X \wedge \mathbb{L}_X[n]$ an *n*-shifted 2-form is **non-degenerate** if $\omega_0^{\flat}: \mathbb{T}_X := \mathbb{L}_X^{\vee} \xrightarrow{\simeq} \mathbb{L}_X[n]$: exhibit symmetry of the cotangent complex

Derived critical loci are (-1)-shifted symplectic

$$\begin{array}{ccc} \mathbb{R}\operatorname{Crit}(f) & \longrightarrow & Y \\ \downarrow & & \downarrow^{d_{\mathsf{dR}}f} \\ Y & \stackrel{0}{\longrightarrow} & T^{\vee}Y \end{array} & & \mathbb{L}_{X} = \begin{bmatrix} T_{Y} & \stackrel{\operatorname{Hess}(f)}{\longrightarrow} & T_{Y}^{\vee} \end{bmatrix} \\ \mathbb{T}_{X} = & \begin{bmatrix} (T_{Y}^{\vee})^{\vee} \end{bmatrix} \xrightarrow{\operatorname{Hess}(f)^{\vee}} & T_{Y}^{\vee} \end{array}$$

\mathcal{B} *G* is 2-shifted symplectic

 $\mathbb{L}_{\mathcal{B}\,G}=\mathfrak{g}^{\vee}[-1]\text{, whence }\omega_0\in\Gamma(\mathcal{B}\,G,\wedge^2\mathbb{L}_{\mathcal{B}\,G})[2]=\text{Sym}^2(\mathfrak{g}^{\vee})^{\,G}\text{ is the Killing form}$

Shifted cotangent stacks are shifted symplectic (Calaque)

 $\mathcal{T}^{\vee}[n]\mathcal{Y} = \mathbb{V}_{\mathbf{Y}}(\mathbb{L}_{\mathbf{Y}}[n])$ total space of $\mathbb{L}_{\mathbf{Y}}[n]^{\vee}$, with $\omega_0 = d_{dR} \theta$, θ soldering form

Yonedark magic

Lemma (Pantev-Toën-Vaquié-Vezzosi)

 $\mathfrak{MRE}^{op} \ni R \mapsto \mathscr{A}^{2,\mathrm{cl}}(\operatorname{Spec} R, n)$ satisfies étale descent, *i.e.* it is a sheaf/stack: "moduli stack of *n*-shifted presymplectic forms" $\mathscr{A}^{2,\mathrm{cl}}(-, n)$.

Yonedark magic

Lemma (Pantev-Toën-Vaquié-Vezzosi)

 $\mathfrak{Aff}_{\mathbb{C}}^{\mathrm{op}} \ni R \mapsto \mathscr{A}^{2,\mathrm{cl}}(\operatorname{Spec} R, n)$ satisfies étale descent, *i.e.* it is a sheaf/stack: "moduli stack of *n*-shifted presymplectic forms" $\mathscr{A}^{2,\mathrm{cl}}(-, n)$.

Corollary (Pantev–Toën–Vaquié–Vezzosi)

For any derived stack X,

$$\mathscr{A}^{2,\mathrm{cl}}(X,n) \simeq \hom(X,\mathscr{A}^{2,\mathrm{cl}}(-,n))$$

Consequence: The ∞ -category of *n*-shifted presymplectic derived stacks is a (slice) ∞ -topos $\operatorname{PrSymp}(n) = \mathfrak{bSt}_{/\mathscr{A}^{2,\mathrm{cl}}(-,n)}$

 $\mathfrak{Symp}(n)$ is the full subcategory of $\mathfrak{SSt}_{/\mathfrak{A}^{2,\mathrm{cl}}(-,n)}$ on the non-degenerate forms: in practice, work in $\mathfrak{SSt}_{/\mathfrak{A}^{2,\mathrm{cl}}(-,n)}$ and then check non-degeneracy.

(Pre-)Lagrangian structures

Isotropic structure on $f: Y \to X$ relative to $\omega \in \mathscr{A}^{2,\mathrm{cl}}(X, n)$: trivialisation $f^*\omega \xrightarrow{\simeq} 0$ in $\mathscr{A}^{2,\mathrm{cl}}(Y, n)$

Lagrangian correspondences

Pulling back presymplectic forms

 $\lceil \omega \rceil \colon X \to \mathscr{A}^{2,\mathrm{cl}}(-,n) \text{ (pre)symplectic, } f \colon Y \to X. \text{ Then } \lceil f^* \omega \rceil \colon Y \xrightarrow{f} X \xrightarrow{\lceil \omega \rceil} \mathscr{A}^{2,\mathrm{cl}}(-,n)$

(Pre-)Lagrangian structures

Isotropic structure on $f: Y \to X$ relative to $\omega \in \mathscr{A}^{2,\mathrm{cl}}(X, n)$: trivialisation $f^*\omega \xrightarrow{\simeq} 0$ in $\mathscr{A}^{2,\mathrm{cl}}(Y, n)$

$$\begin{array}{ccc} Y & \stackrel{f}{\longrightarrow} X \\ \downarrow & & \downarrow^{\ulcorner} \omega^{\urcorner} \\ * & \stackrel{0}{\longrightarrow} \mathscr{A}^{2,\mathrm{cl}}(-,n) \end{array}$$

Lagrangian correspondences

Pulling back presymplectic forms

 $\ulcorner \omega \urcorner : X \to \mathscr{A}^{2,\mathrm{cl}}(-,n) \text{ (pre)symplectic, } f \colon Y \to X. \text{ Then } \ulcorner f^* \omega \urcorner \colon Y \xrightarrow{f} X \xrightarrow{\ulcorner \omega \urcorner} \mathscr{A}^{2,\mathrm{cl}}(-,n)$

(Pre-)Lagrangian structures Isotropic structure on $f: Y \to X$ relative to $\omega \in \mathscr{A}^{2,\mathrm{cl}}(X,n)$: trivialisation $f^*\omega \xrightarrow{\simeq} 0$ in $\mathscr{A}^{2,\mathrm{cl}}(Y,n)$ $\begin{array}{c} Y & \xrightarrow{f} & X \\ \downarrow & & \downarrow^{\ulcorner}\omega^{\urcorner} &= \\ * & \xrightarrow{0} & \mathscr{A}^{2,\mathrm{cl}}(-,n) \end{array}$ correspondence $(*,0) \to (X,\omega)$ in $\mathfrak{Span}(\mathfrak{dSt}_{/\mathscr{A}^{2,\mathrm{cl}}(n)})$

$$\implies \text{Lagrangian corresp. } (Y, \psi) \rightarrow (X, \omega) \text{ is } Y \swarrow^{Z} \swarrow^{X} \text{ nondegen.}$$

Shifting phenomena in symplectic geometry

Delooping (Calaque)

A Lagrangian structure on $X \to (*, !\omega_{(n+1)})$ is an *n*-symplectic structure on X

Shifting phenomena in symplectic geometry

Delooping (Calaque)

A Lagrangian structure on $X o (*, !\omega_{(n+1)})$ is an *n*-symplectic structure on X

Ex.: Recover derived critical loci: 0, $d_{dR} f: V \to T^{\vee}[n]V$ Lagrangian

Shifting phenomena in symplectic geometry

Delooping (Calaque)

A Lagrangian structure on $X o (*, !\omega_{(n+1)})$ is an *n*-symplectic structure on X

Ex.: Recover derived critical loci: 0, $d_{dR} f: V \to T^{\vee}[n]V$ Lagrangian

Quotients of symplectic groupoids (Calaque–Safronov)

 G_{ullet} *n*-shifted symplectic groupoid \implies $|G_{ullet}|$ (n+1)-symplectic stack

Contents - Section 2: Shifted symplectic groupoids

Shifted cotangent bundles

2 Shifted symplectic groupoids

3 Calabi–Yau monads and correspondences

Atlases and groupoids for algebraic derived stacks

An *n*-Artin derived stack X admits an atlas $\varpi: U \twoheadrightarrow X$ where

- U is a union of affine derived schemes,
- ▶ ϖ is smooth with (n-1)-Artin fibres.

Atlases and groupoids for algebraic derived stacks

An *n*-Artin derived stack X admits an atlas $\varpi: U \twoheadrightarrow X$ where

- U is a union of affine derived schemes,
- ▶ ϖ is smooth with (n-1)-Artin fibres.

Taking the kernel (aka nerve) of the surjection ϖ : get a groupoid G_{ullet} (in \mathfrak{dSt})

$$\cdots \qquad G_2 = U \times_X U \times_X U \xrightarrow{\longleftarrow} G_1 = U \times_X U \xrightarrow{\longleftarrow} G_0 = U$$

where:

G_i is a union of (n − 1)-Artin stacks
G_{i+1} → G_i is smooth with (n − 1)-Artin fibres

and $X = |G_{\bullet}| = \operatorname{colim}_{\longrightarrow} G_{\bullet}$

Groupoids in general

Notation: For
$$f: [k] \rightarrow [n]$$
 in Δ , write $X_n \rightarrow X_{\{f(1),\dots,f(k)\}} = X_k$

Internal categories

A category object in an ∞ -category \mathfrak{C} is a simplicial object $X_{\bullet} \colon \Delta^{\mathrm{op}} \to \mathfrak{C}$ such that the Segal cone $\{X_n \to X_{\{i,i+1\}} = X_1\}_{0 \leqslant i \leqslant n}$ exhibits $X_n = X_1 \underset{d_0, X_0, d_1}{\times} \cdots \underset{d_0, X_0, d_1}{\times} X_1$

Groupoids in general

Notation: For
$$f: [k] \rightarrow [n]$$
 in Δ , write $X_n \rightarrow X_{\{f(1),...,f(k)\}} = X_k$

Internal categories

A category object in an ∞ -category \mathfrak{C} is a simplicial object $X_{\bullet} \colon \Delta^{\mathrm{op}} \to \mathfrak{C}$ such that the Segal cone $\{X_n \to X_{\{i,i+1\}} = X_1\}_{0 \leqslant i \leqslant n}$ exhibits $X_n = X_1 \underset{d_0, X_0, d_1}{\times} \cdots \underset{d_0, X_0, d_1}{\times} X_1$

- X_{\bullet} is further a groupoid object if, equivalently:
 - ► Unordered Segal decomposition(s): $X_2 \xrightarrow{\simeq} X_{\{0,1\}} \underset{X_{\{0,1\}}}{\times} X_{\{0,2\}}$ and $X_2 \xrightarrow{\simeq} X_{\{1,2\}} \underset{X_{\{0,2\}}}{\times} X_{\{0,2\}}$
 - ▶ Compatible $\mathfrak{S}_{\bullet+1}$ -actions (in fact only need the sub- $C_{\bullet+1}$ -actions)

Groupoids in general

Notation: For
$$f: [k] \rightarrow [n]$$
 in Δ , write $X_n \rightarrow X_{\{f(1),...,f(k)\}} = X_k$

Internal categories

A category object in an ∞ -category \mathfrak{C} is a simplicial object $X_{\bullet} \colon \Delta^{\mathrm{op}} \to \mathfrak{C}$ such that the Segal cone $\{X_n \to X_{\{i,i+1\}} = X_1\}_{0 \leqslant i \leqslant n}$ exhibits $X_n = X_1 \underset{d_0, X_0, d_1}{\times} \cdots \underset{d_0, X_0, d_1}{\times} X_1$

- X_{\bullet} is further a groupoid object if, equivalently:
 - ► Unordered Segal decomposition(s): $X_2 \xrightarrow{\simeq} X_{\{0,1\}} \underset{X_{\{0,2\}}}{\times} X_{\{0,2\}}$ and $X_2 \xrightarrow{\simeq} X_{\{1,2\}} \underset{X_{\{0,2\}}}{\times} X_{\{0,2\}}$
 - ▶ Compatible $\mathfrak{S}_{\bullet+1}$ -actions (in fact only need the sub- $C_{\bullet+1}$ -actions)

A monoid in $\mathbb{C} \rightsquigarrow$ internal category $\text{Bar}_{\bullet} A$ with $\text{Bar}_n A = A^n$. Groupoid iff A is a group.

Shifted symplectic groupoids

 $\mathscr{A}^{2,\mathrm{cl}}(n)$ abelian group \implies groupoid $\operatorname{Bar}_{\bullet} \mathscr{A}^{2,\mathrm{cl}}(n)$ in \mathfrak{dSt} .

Definition (Shifted presymplectic groupoid)

An *n*-shifted symplectic groupoid is a groupoid G_{\bullet} in \mathfrak{dSt} over $\operatorname{Bar}_{\bullet} \mathfrak{A}^{2,\operatorname{cl}}(n)$

Shifted symplectic groupoids

 $\mathscr{A}^{2,\mathrm{cl}}(n)$ abelian group \implies groupoid $\operatorname{Bar}_{\bullet} \mathscr{A}^{2,\mathrm{cl}}(n)$ in \mathfrak{dSt} .

Definition (Shifted presymplectic groupoid)

An *n*-shifted symplectic groupoid is a groupoid G_{\bullet} in \mathfrak{dSt} over $\operatorname{Bar}_{\bullet} \mathscr{A}^{2,\operatorname{cl}}(n)$

Consequences

- For any k, map $G_k \xrightarrow{(\ulcorner \theta_1 \urcorner, ..., \ulcorner \theta_k \urcorner)} \mathscr{A}^{2, \operatorname{cl}}(n)^k \iff k$ n-symplectic structures θ_i on G_k
- Isotropic correspondence $\gamma_k \colon G_1^k \leftarrow G_k \to G_1$

G_{\bullet} is *n*-symplectic if the γ_k are Lagrangian correspondences

Symplectic presentations

Proposition (Calaque–Safronov)

An *n*-presymplectic structure ω_{\bullet} on G_{\bullet} induces an (n + 1)-shifted isotropic structure on $G_0 \twoheadrightarrow |G_{\bullet}|$. It is Lagrangian (in part. $|G_{\bullet}|$ is (n + 1)-symplectic) iff ω_{\bullet} is symplectic.
Proposition (Calaque–Safronov)

An *n*-presymplectic structure ω_{\bullet} on G_{\bullet} induces an (n + 1)-shifted isotropic structure on $G_0 \rightarrow |G_{\bullet}|$. It is Lagrangian (in part. $|G_{\bullet}|$ is (n + 1)-symplectic) iff ω_{\bullet} is symplectic.

Theorem (Calaque–K.)

 $X = |G_{\bullet}|$ derived Artin stack with atlas G_{\bullet} . Then $T^{\vee}[n+1]X$ admits a presentation by a symplectic groupoid given in level k by

$$N^{\vee}[n] \left(G_k \to G_1^{k+1} = G_{\{0,1\}} \times \cdots \times G_{\{k-1,k\}} \times \overline{G_{\{0,k\}}} \right)$$

Proposition (Calaque–Safronov)

An *n*-presymplectic structure ω_{\bullet} on G_{\bullet} induces an (n + 1)-shifted isotropic structure on $G_0 \rightarrow |G_{\bullet}|$. It is Lagrangian (in part. $|G_{\bullet}|$ is (n + 1)-symplectic) iff ω_{\bullet} is symplectic.

Theorem (Calaque–K.)

 $X = |G_{\bullet}|$ derived Artin stack with atlas G_{\bullet} . Then $T^{\vee}[n+1]X$ admits a presentation by a symplectic groupoid given in level k by

$$N^{\vee}[n]\left(G_k \to G_1^{k+1} = G_{\{0,1\}} \times \cdots \times G_{\{k-1,k\}} \times \overline{G_{\{0,k\}}}\right)$$

For $\mathcal{B} G = |\text{Bar} G|$

 $\textit{N}^{\bigvee}[\textit{n}](\textit{G}^k \rightarrow \textit{G}^k \times \textit{G}) \simeq (\textit{T}^{\bigvee}[\textit{n}]\textit{G}) \times_{\textit{G}} \textit{G}^k = \mathbb{V}_{\textit{G}^k}(\mathfrak{g}^{\bigvee}[\textit{n}] \otimes \mathfrak{G}_{\textit{G}^k}): \text{ quotient by adjoint }\textit{G-action}$

First ingredient: functoriality of cotangent bundles

 $f\colon Y \to X$ morphism of Artin derived stacks: there is a Lagrangian correspondence

Upshot: ∞ -functor \mathcal{T} :

$$\mathfrak{bSt} \xrightarrow{\mathcal{T}^{\vee}[n]} \mathfrak{LagCorr}(n) \subset \mathfrak{Span}(\mathfrak{bSt}_{/\mathfrak{A}^{2,\mathrm{cl}}(n)})$$

David KERN (KTH)

Shifted cotangent groupoids

First ingredient: functoriality of cotangent bundles

 $f\colon Y \to X$ morphism of Artin derived stacks: there is a Lagrangian correspondence

More generally, for any span $Y \xleftarrow{g} Z \xrightarrow{f} X$ of Artin derived stacks, Lagrangian

Upshot: ∞ -functor $\mathcal{T}: \mathfrak{Span}(\mathfrak{dSt}) \xrightarrow{(\mathcal{T}^{\vee}[n], \mathcal{N}^{\vee}[n])} \mathfrak{LagCorr}(n) \subset \mathfrak{Span}(\mathfrak{dSt}_{/\mathfrak{A}^{2, \mathrm{cl}}(n)})$

Groupoids and algebras in spans

Problem: \mathcal{T} has no reason to send a groupoid in \mathfrak{H} to a groupoid in $\mathfrak{H}_{/\mathfrak{A}^{2,\mathrm{cl}}(n)}$. If \mathcal{T} does not preserve groupoids in arrows, what does it preserve? Problem: \mathcal{T} has no reason to send a groupoid in \mathfrak{H} to a groupoid in $\mathfrak{H}_{/\mathfrak{A}^{2,\mathrm{cl}}(n)}$. If \mathcal{T} does not preserve groupoids in arrows, what does it preserve?

Remark:

1. For any \mathfrak{C} with limits, $\mathfrak{Span}(\mathfrak{C})$ has a monoidal structure " \times " by C" \times " $D = C \times D$

Problem: \mathcal{T} has no reason to send a groupoid in \mathfrak{H} to a groupoid in $\mathfrak{H}_{/\mathfrak{A}^{2,\mathrm{cl}}(n)}$. If \mathcal{T} does not preserve groupoids in arrows, what does it preserve?

Remark:

1. For any \mathfrak{C} with limits, $\mathfrak{Span}(\mathfrak{C})$ has a monoidal structure "×" by C"×" $D = C \times D$ 2. If (M, +) is a monoid in \mathfrak{C} , monoidal structure on $\mathfrak{Span}(\mathfrak{C}_{/M})$ with

$$\begin{array}{cccc} C & D & C \times D \\ f \downarrow & \boxplus & \downarrow g & = & f \times g \downarrow & & \\ M & M & & M \times M \xrightarrow{f \boxplus g} & M \end{array}$$

Our \mathcal{T} is a monoidal functor $\mathfrak{Span}(\mathfrak{dSt})^{''\times''} \to \mathfrak{LagCorr}(n)^{\boxplus}$

Contents - Section 3: Calabi–Yau monads and correspondences

Shifted cotangent bundles

2 Shifted symplectic groupoids

3 Calabi–Yau monads and correspondences

Groupoids as algebras in spans

Groupoids as algebras in spans

 X_{ullet} groupoid: cyclic actions au: $X_{n+1} \xrightarrow{\simeq} X_{n+1}$ give Calabi–Yau (aka Frobenius) structure

Groupoids as algebras in spans

 X_{ullet} groupoid: cyclic actions $\tau \colon X_{n+1} \xrightarrow{\simeq} X_{n+1}$ give Calabi–Yau (aka Frobenius) structure

Problem: Not all (CY) algebras arise this way: (d_2, d_0) isn't always an iso

2-Segal objects

Definition

A 2-Segal object in \mathfrak{C} is $X_{\bullet} \colon \Delta^{\mathrm{op}} \to \mathfrak{C}$ such that for any $N \ge 3$,

$$X_n \xrightarrow{\simeq} X_{\{0,1,2\}} \underset{X_{\{0,2\}}}{\times} \cdots \underset{X_{\{0,n-2\}}}{\times} X_{\{0,n-2,n-1\}} \underset{X_{\{0,n-1\}}}{\times} X_{\{0,n-1,n\}}$$

and

$$X_n \xrightarrow{\simeq} X_{\{0,1,n\}} \underset{X_{\{1,n\}}}{\times} \cdots \underset{X_{\{n-3,n\}}}{\times} X_{\{n-3,n-2,n\}} \underset{X_{\{n-2,n\}}}{\times} X_{\{n-2,n-1,n\}}$$

2-Segal objects

Definition

A 2-Segal object in \mathfrak{C} is $X_{\bullet} \colon \Delta^{\mathrm{op}} \to \mathfrak{C}$ such that for any $N \ge 3$,

$$X_n \xrightarrow{\simeq} X_{\{0,1,2\}} \underset{X_{\{0,2\}}}{\times} \cdots \underset{X_{\{0,n-2\}}}{\times} X_{\{0,n-2,n-1\}} \underset{X_{\{0,n-1\}}}{\times} X_{\{0,n-1,n\}}$$

а	r	ſ	d	
u		•	u	

$$X_n \xrightarrow{\simeq} X_{\{0,1,n\}} \underset{X_{\{1,n\}}}{\times} \cdots \underset{X_{\{n-3,n\}}}{\times} X_{\{n-3,n-2,n\}} \underset{X_{\{n-2,n\}}}{\times} X_{\{n-2,n-1,n\}}$$

The algebra of 2-Segal objects

Theorem (Penney, Gal–Gal, Stern)

There is an equivalence of ∞ -categories between (cyclic) 2-Segal objects in \mathfrak{C} and (CY) algebras in $\mathfrak{Span}(\mathfrak{C})$.

The algebra of 2-Segal objects

Theorem (Penney, Gal–Gal, Stern)

There is an equivalence of ∞ -categories between (cyclic) 2-Segal objects in \mathfrak{C} and (CY) algebras in $\mathfrak{Span}(\mathfrak{C})$.

Lemma (Calaque–K.)

For any cyclic 2-Segal X_{\bullet} , the 1-Segal map $X_2 \xrightarrow{(d_2,d_0)} X_{\{0,1\}} \times_{X_{\{1\}}} X_{\{1,2\}}$ admits a section.

Proof.

$$\gamma \colon X_{\{0,1\}} \times_{X_{\{1\}}} X_{\{1,2\}} \xrightarrow{s_1 \times_{s_0} (\tau^2 \circ s_0)} X_{\{0,1,3\}} \times_{X_{\{1,3\}}} X_{\{1,2,3\}} \xrightarrow{(d_2,d_0)^{-1}} X_{\{0,1,2,3\}} \xrightarrow{d_3} X_{\{0,1,2\}}$$

The algebra of 2-Segal objects

Theorem (Penney, Gal–Gal, Stern)

There is an equivalence of ∞ -categories between (cyclic) 2-Segal objects in \mathfrak{C} and (CY) algebras in $\mathfrak{Span}(\mathfrak{C})$.

Lemma (Calaque–K.)

For any cyclic 2-Segal
$$X_{\bullet}$$
, the 1-Segal map $X_2 \xrightarrow{(d_2,d_0)} X_{\{0,1\}} \times_{X_{\{1\}}} X_{\{1,2\}}$ admits a section.

Proof.

 γ section of $(d_2, d_0) \implies X_{\bullet}$ is 1-Segal iff $\gamma \circ (d_2, d_0) = \mathrm{id}_{X_2}$ Problem: 1-Segal condition is $X_1 \times_{X_0} X_1 \xleftarrow{\simeq} X_2$, but algebra only knows $X_1 \times X_1 \leftarrow X_2$

 γ section of $(d_2, d_0) \implies X_{\bullet}$ is 1-Segal iff $\gamma \circ (d_2, d_0) = \operatorname{id}_{X_2}$ Problem: 1-Segal condition is $X_1 \times_{X_0} X_1 \xleftarrow{\simeq} X_2$, but algebra only knows $X_1 \times X_1 \leftarrow X_2$ \rightsquigarrow Replace monoidal structure " \times " by $\underset{d_0, X_0, d_1}{\times}$ Requires: know that X_1 lives over X_1 , in two different ways d_1, d_0

David KERN (KTH)

 $\begin{array}{l} \gamma \text{ section of } (d_2, d_0) \implies X_{\bullet} \text{ is 1-Segal iff } \gamma \circ (d_2, d_0) = \operatorname{id}_{X_2} \\ \text{Problem: 1-Segal condition is } X_1 \times_{X_0} X_1 \xleftarrow{\simeq} X_2, \text{ but algebra only knows } X_1 \times X_1 \leftarrow X_2 \\ \rightsquigarrow \text{ Replace monoidal structure "} \vee y \xrightarrow{d_0, X_0, d_1} \end{array}$

Requires: know that X_1 lives over X_1 , in two different ways d_1, d_0

 \rightsquigarrow Composition in an $(\infty, 2)$ -category (rather, double ∞ -category) where $X_0 \leftarrow X_1 \rightarrow X_0$ are 1-arrows

 γ section of $(d_2, d_0) \implies X_{\bullet}$ is 1-Segal iff $\gamma \circ (d_2, d_0) = \mathrm{id}_{X_2}$ Problem: 1-Segal condition is $X_1 \times_{X_0} X_1 \xleftarrow{\simeq} X_2$, but algebra only knows $X_1 \times X_1 \leftarrow X_2$ \rightsquigarrow Replace monoidal structure " \times " by $\underset{d_0, X_0, d_1}{\times}$ Pequirect know that X_1 lives over X_2 in two different waves d_2 defined to $X_1 \otimes X_2$.

Requires: know that X_1 lives over X_1 , in two different ways d_1, d_0

 \rightsquigarrow Composition in an $(\infty, 2)$ -category (rather, double ∞ -category) where $X_0 \leftarrow X_1 \rightarrow X_0$ are 1-arrows and spans are the 2-arrows

Monads in double categories

A monad in a double ∞ -category \mathfrak{K} is: horizontal endomorphism $X_0 \xrightarrow{t} X_0$ with cells

 \implies = monoid in hom^{hor}(X_0, X_0)

Theorem (Dyckerhoff–Kapranov)

Every 2-Segal object X_{\bullet} in \mathfrak{C} gives rise to a monad $\mathfrak{H}(X_{\bullet})$ in $\operatorname{Spam}_2(\mathfrak{C})$

Triple ∞ -category of iterated spans

Questions

- 1. What about going back, from algebras in spans to 2-Segal objects?
- 2. How to understand the 1-Segal condition?
- 3. What about morphisms?

Triple ∞ -category of iterated spans

Questions

- 1. What about going back, from algebras in spans to 2-Segal objects?
- 2. How to understand the 1-Segal condition?
- 3. What about morphisms?

The triple ∞ -category $\text{Spam}_2^+(\mathfrak{dSt})$

Now 3 directions for arrows: horizontal, vertical, transversal cells: horizontal, vertical, basic + cubes (maps between iterated spans)

Triple ∞ -category of iterated spans

Questions

- 1. What about going back, from algebras in spans to 2-Segal objects?
- 2. How to understand the 1-Segal condition?
- 3. What about morphisms?

The triple ∞ -category $\text{Spam}_2^+(\mathfrak{dSt})$

Now 3 directions for arrows: horizontal, vertical, transversal cells: horizontal, vertical, basic + cubes (maps between iterated spans) Basic monads recover the Theorem

The joys of companionship

Companion pairs in $\operatorname{Span}_{2}^{+}(\mathfrak{GSt})$ The basic cell $\begin{array}{c} A \leftarrow C \rightarrow B \\ \parallel & \parallel & \parallel \\ A \leftarrow C \rightarrow B \\ f \downarrow & \downarrow h & \downarrow g \\ X \leftarrow Z \rightarrow Y \end{array}$

The joys of companionship

Universal characterisation (adjunction-style)

The joys of companionship

Companion pairs in $\operatorname{Span}_2^+(\mathfrak{dSt})$

The basic cell
$$\begin{array}{ccc} A \leftarrow C \to B \\ \| & \| & \| \\ A \leftarrow C \to B \\ f \downarrow & \downarrow h & \downarrow g \\ X \leftarrow Z \to Y \end{array}$$
 is characterised as companion to $\begin{array}{ccc} A \leftarrow C \to B \\ \downarrow & h \searrow g \\ X \leftarrow Z \to Y \end{array}$

Universal characterisation (adjunction-style)

First consequence

Unit cell of $\mathcal{H}(X_{\bullet})$ is:

Companion cells and the 1-Segal condition

Observation

Considering only the companion (basic) cells in $\text{Spam}_2^+(\mathfrak{C})$ recovers $\text{Spam}_1^+(\mathfrak{C})$

Companion cells and the 1-Segal condition

Observation

Considering only the companion (basic) cells in $\operatorname{Spam}_2^+(\mathfrak{C})$ recovers $\operatorname{Spam}_1^+(\mathfrak{C})$

Corollary

Gregarious monads (structure cells are companions) in $\operatorname{Spam}_2^+(\mathfrak{C})$ are monads in $\operatorname{Spam}_1^+(\mathfrak{C})$ (Note: gregarious in $\operatorname{Spam}_2^+(\mathfrak{C}) \iff 1$ -Segal condition):

Companion cells and the 1-Segal condition

Observation

Considering only the companion (basic) cells in $\text{Spam}_2^+(\mathfrak{C})$ recovers $\text{Spam}_1^+(\mathfrak{C})$

Corollary

Gregarious monads (structure cells are companions) in $\operatorname{Spam}_2^+(\mathfrak{C})$ are monads in $\operatorname{Spam}_1^+(\mathfrak{C})$ (Note: gregarious in $\operatorname{Spam}_2^+(\mathfrak{C}) \iff 1$ -Segal condition)

Lemma (Haugseng)

Monads in $\operatorname{Spam}_1^+(\operatorname{\mathfrak{C}})$ are categories in $\operatorname{\mathfrak{C}}$

Likewise: CY monads in $\operatorname{Spam}_2^+(\mathfrak{C})$ are cyclic 2-Segal objects, and groupoids iff the structure cells are companions (*i.e.* satisfy 1-Segal)

An orthomorphism of (basic) monads is a transversal morphism between them

An orthomorphism of (basic) monads is a transversal morphism between them

Proposition

Orthomorphisms between (CY) monads in $\operatorname{Spam}_2^+(\mathfrak{C})$ correspond to morphisms between (cyclic) 2-Segal objects: equivalence $\operatorname{Mnb}_{\perp}^{CY}(\operatorname{Spam}_2^+(\mathfrak{C})) \simeq 2-\mathfrak{Seg}^{S^1}(\mathfrak{C})$

An orthomorphism of (basic) monads is a transversal morphism between them

Proposition

Orthomorphisms between (CY) monads in $\operatorname{Spam}_2^+(\mathfrak{C})$ correspond to morphisms between (cyclic) 2-Segal objects: equivalence $\operatorname{Mnb}_{\perp}^{CY}(\operatorname{Spam}_2^+(\mathfrak{C})) \simeq 2-\mathfrak{Seg}^{S^1}(\mathfrak{C})$

Lemma

$$\mathsf{For} \text{ any monoid } A \text{ in } \mathfrak{C}, \text{ equivalence } \mathfrak{Mnb}_{\bot}^{\mathsf{CY}}(\mathbb{Spam}_2^+(\mathfrak{C}_{/A})) \xrightarrow{\simeq} \mathfrak{Mnb}_{\bot}^{\mathsf{CY}}(\mathbb{Spam}_2^+(\mathfrak{C}))_{/A}$$

Taking $A = \mathscr{A}^{2,\mathrm{cl}}(n)$, get: *n*-shifted isotropic groupoids $\simeq \mathfrak{Mnb}^{\mathrm{CY},\mathrm{gr.}}_{\perp}(\mathfrak{Span}^+_2(\mathfrak{bSt}_{/\mathscr{A}^{2,\mathrm{cl}}(n)}))$

An orthomorphism of (basic) monads is a transversal morphism between them

Proposition

Orthomorphisms between (CY) monads in $\operatorname{Spam}_2^+(\mathfrak{C})$ correspond to morphisms between (cyclic) 2-Segal objects: equivalence $\operatorname{Mnb}_{\perp}^{CY}(\operatorname{Spam}_2^+(\mathfrak{C})) \simeq 2-\mathfrak{Seg}^{\mathcal{S}^1}(\mathfrak{C})$

Lemma

$$\mathsf{For} \text{ any monoid } A \text{ in } \mathfrak{C}, \text{ equivalence } \mathfrak{Mnb}_{\bot}^{\mathsf{CY}}(\mathbb{Spam}_2^+(\mathfrak{C}_{/A})) \xrightarrow{\simeq} \mathfrak{Mnb}_{\bot}^{\mathsf{CY}}(\mathbb{Spam}_2^+(\mathfrak{C}))_{/A}$$

Taking $A = \mathscr{A}^{2,\mathrm{cl}}(n)$, get: *n*-shifted isotropic groupoids $\simeq \operatorname{Mnb}_{\perp}^{\mathrm{CY},\mathrm{gr.}}(\operatorname{Spam}_{2}^{+}(\mathfrak{dSt}_{/\mathscr{A}^{2,\mathrm{cl}}(n)}))$ Conclusion: $\operatorname{Grpd}(\mathfrak{dSt}) \simeq \operatorname{Mnb}_{\perp}^{\mathrm{CY},\mathrm{gr.}}(\operatorname{Spam}_{2}^{+}(\mathfrak{dSt})) - (T^{\vee}[n], N^{\vee}[n])$

$$\stackrel{{}_{\leftarrow}}{\to} \mathfrak{Mn} \mathfrak{d}^{\mathrm{CY},\mathrm{gr.}}_{\bot}(\mathfrak{Spam}^+_2(\mathfrak{dSt}_{/\mathscr{A}^{2,\mathrm{cl}}(n)})) \simeq \mathfrak{Grp} \mathfrak{d}(\mathfrak{dSt})_{/\operatorname{Bar}_{\bullet}\mathscr{A}^{2,\mathrm{cl}}(n)}$$

Backup

Shifting and delooping for presymplectic forms

Lemma (looping-delooping)

 $\Omega_0 \mathscr{A}^{2,\mathrm{cl}}(n+1) \coloneqq \ast \underset{\mathscr{A}^{2,\mathrm{cl}}(n+1)}{\times} \ast \simeq \mathscr{A}^{2,\mathrm{cl}}(n) \text{, and conversely Bar}_{\bullet} \mathscr{A}^{2,\mathrm{cl}}(n) \text{ presents } \mathscr{A}^{2,\mathrm{cl}}(n+1)$
Shifting and delooping for presymplectic forms

Lemma (looping-delooping)

$$\Omega_0 \mathscr{A}^{2,\mathrm{cl}}(n+1) \coloneqq * \underset{\mathscr{A}^{2,\mathrm{cl}}(n+1)}{\times} * \simeq \mathscr{A}^{2,\mathrm{cl}}(n), \text{ and conversely Bar}_{\bullet} \mathscr{A}^{2,\mathrm{cl}}(n) \text{ presents } \mathscr{A}^{2,\mathrm{cl}}(n+1)$$

Corollary

 G_{ullet} *n*-shifted presymplectic groupoid \implies (n+1)-shifted isotropic $G_0 \rightarrow |G_{ullet}|$

Shifting and delooping for presymplectic forms

Lemma (looping-delooping)

 $\Omega_0 \mathscr{A}^{2,\mathrm{cl}}(n+1) \coloneqq * \underset{\mathscr{A}^{2,\mathrm{cl}}(n+1)}{\times} * \simeq \mathscr{A}^{2,\mathrm{cl}}(n), \text{ and conversely Bar}_{\bullet} \mathscr{A}^{2,\mathrm{cl}}(n) \text{ presents } \mathscr{A}^{2,\mathrm{cl}}(n+1)$

Corollary

 G_{ullet} *n*-shifted presymplectic groupoid \implies (n+1)-shifted isotropic $G_0 \rightarrow |G_{ullet}|$

Fact: "Quotient" colim: $\mathfrak{C}^{\Delta^{\mathrm{op}}} \to \operatorname{Ar}(\mathfrak{C}) = \mathfrak{C}^{\to}$ is left-adjoint to ker_•: $\operatorname{Ar}(\mathfrak{C}) \to \mathfrak{C}^{\Delta^{\mathrm{op}}}$ Observation: ker_•(* $\to \mathscr{A}^{2,\mathrm{cl}}(n+1)$) \simeq Bar_• $\mathscr{A}^{2,\mathrm{cl}}(n)$

Shifting and delooping for presymplectic forms

Lemma (looping-delooping)

 $\Omega_0 \mathscr{A}^{2,\mathrm{cl}}(n+1) \coloneqq \ast \underset{\mathscr{A}^{2,\mathrm{cl}}(n+1)}{\times} \ast \simeq \mathscr{A}^{2,\mathrm{cl}}(n), \text{ and conversely } \mathsf{Bar}_{\bullet} \mathscr{A}^{2,\mathrm{cl}}(n) \text{ presents } \mathscr{A}^{2,\mathrm{cl}}(n+1)$

Corollary

 G_{ullet} *n*-shifted presymplectic groupoid \implies (n+1)-shifted isotropic $G_0 \rightarrow |G_{ullet}|$

Fact: "Quotient" $\operatorname{colim}: \mathfrak{C}^{\Delta^{\operatorname{op}}} \to \operatorname{Ar}(\mathfrak{C}) = \mathfrak{C}^{\to}$ is left-adjoint to ker_•: $\operatorname{Ar}(\mathfrak{C}) \to \mathfrak{C}^{\Delta^{\operatorname{op}}}$ Observation: ker_•(* $\to \mathscr{A}^{2,\operatorname{cl}}(n+1)$) \simeq Bar_• $\mathscr{A}^{2,\operatorname{cl}}(n)$

$$\implies G_{\bullet} \to \text{Bar}_{\bullet} \mathscr{A}^{2,\text{cl}}(n) \text{ corresponds}$$

to morphism of quotient maps

Non-degeneracy for isotropic correspondences

Non-degeneracy for isotropic correspondences

$$\begin{array}{cccc} L & \xrightarrow{r} & X & & \mathbb{T}_{L} & \longrightarrow & f^{*}\mathbb{T}_{X} \simeq f^{*}\mathbb{L}_{X}[n] \\ g & & \downarrow & \text{Lagrangian if} & & \downarrow & & \text{cocartesian} \\ Y & \longrightarrow & \mathcal{A}^{2,\text{cl}}(n) & & g^{*}\mathbb{T}_{Y} \simeq g^{*}\mathbb{L}_{Y}[n] & \longrightarrow & \mathbb{L}_{L}[n] \end{array}$$

Link with classical symplectic groupoids

Lemma (Calaque-Safronov)

 G_{\bullet} *n*-shifted symplectic groupoid. Then the *n*-presymplectic structure on G_1 is symplectic.

Proof.

 $G_0
ightarrow |G_{ullet}|$ *n*-Lagrangian \implies $G_1 \simeq G_0 imes_{|G_{ullet}|} G_0$ *n*-symplectic

Link with classical symplectic groupoids

Lemma (Calaque–Safronov)

 G_{\bullet} *n*-shifted symplectic groupoid. Then the *n*-presymplectic structure on G_1 is symplectic.

Proof.

$$G_0
ightarrow |G_{ullet}|$$
 n-Lagrangian \implies $G_1 \simeq G_0 imes_{|G_{ullet}|} G_0$ *n*-symplectic

Proposition (Calaque–Safronov)

 G_{\bullet} *n*-presymplectic groupoid, and suppose we know G_1 is *n*-symplectic. TFAE:

- 1. $\gamma_0: * \leftarrow G_0 \rightarrow G_1$ is non-degenerate (*i.e.* Lagrangian),
- 2. $\gamma_2 \colon {\it G}_1^2 \leftarrow {\it G}_2 \rightarrow {\it G}_1$ is non-degenerate,
- 3. all the γ_k are non-degenerate.