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Algebraic symplectic structures and the cotangent complex

“Smooth” symplectic structure: non-degenerate section of vector bundle A2,cl(X) ⊂ ∧2Ω1
X

If X is not smooth, Ω1
X is not a vector bundle.

Why?
I Answer in the cotangent complex LX .

“Algebraic” singularity: X = {f1 = · · · = fr = 0} ⊂ An
C

LX =
[ −1
N∨

X/An
d−→

0
Ω1

An |X
]
where N∨

X/An = I/I2, I ideal generated by f1, . . . , fr
Also LX/An = N∨

X/An [1] =⇒ Notation N∨
X := LX [−1]

Orbisingularity: X = [V /G ]

LX =
[ 0
Ω1

V
d−→

1
g∨ ⊗ OV

]
(Remark: QCoh(X) = QCoh(V )G )

Note: In both cases, LX is a finite complex of vector bundles, aka a perfect complex.
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Derived schemes

Upshot: Symplectic forms in singular settings should “live in” Γ(∧2LX ).
How do we make it natural?

I X =
loc.

Spec R with R an algebra in ModC, and Ω1
X,x ∈ModC for any x : SpecC→ X

I LX,x ∈ Ch(C) =: dModC: derived (∞-)category (In fact dMod = Ch[qis−1])
How to reconcile the two?

=⇒ View R as a particular case of algebra in dModC

Definition
dAlgC := cdga

60
C [qis−1]: ∞-category of commutative algebras in dMod

60
C

dAffC = dAlgC
op and derived schemes are locally derived affines
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Symplectic forms redux

X a derived scheme (or stack). A2(X , 0) := Γ(X ,∧2LX )

Remark
∧2LX = Sym2(LX [1])[−2]
Indeed, by antisymmetry of odd degrees, Sym•(M[1]) =

⊕
n>0

(∧nM)[n]

New phenomenon for derived modules: we can shift them!

Definition (n-shifted 2-forms)
A2(X , n) = Γ

(
X , (∧2LX )[n]

)
= Γ(X ,Sym2(LX [1])[n − 2])

Closed n-shifted 2-forms =: n-shifted presymplectic forms
A2,cl(X , n) =

{
ω0 ∈ A2(X , n) + key ddRω0 = dω1, ddRω1 = dω2, . . .

}
→ A2(X , n)
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Examples

ω0 : OX → LX ∧ LX [n] an n-shifted 2-form is non-degenerate if ω[
0 : TX := L∨

X
'−→ LX [n]:

exhibit symmetry of the cotangent complex

Derived critical loci are (−1)-shifted symplectic
RCrit(f ) Y

Y T∨Y
ddR f

0

LX =
[
TY

Hess(f )−−−−→ T∨
Y
]

TX =
[
(T∨

Y )∨
] Hess(f )∨−−−−−→ T∨

Y

BG is 2-shifted symplectic
LBG = g∨[−1], whence ω0 ∈ Γ(BG,∧2LBG)[2] = Sym2(g∨)G is the Killing form

Shifted cotangent stacks are shifted symplectic (Calaque)
T∨[n]Y = VY (LY [n]) total space of LY [n]∨, with ω0 = ddR θ, θ soldering form
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Yonedark magic

Lemma (Pantev–Toën–Vaquié–Vezzosi)
dAffC

op 3 R 7→ A2,cl(Spec R , n) satisfies étale descent, i.e. it is a sheaf/stack: “moduli stack
of n-shifted presymplectic forms” A2,cl(−, n).

Corollary (Pantev–Toën–Vaquié–Vezzosi)
For any derived stack X ,

A2,cl(X , n) ' hom(X ,A2,cl(−, n))

Consequence: The ∞-category of n-shifted presymplectic derived stacks is a (slice) ∞-topos
PrSymp(n) = dSt/A2,cl(−,n)

Symp(n) is the full subcategory of dSt/A2,cl(−,n) on the non-degenerate forms: in practice,
work in dSt/A2,cl(−,n) and then check non-degeneracy.
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Lagrangian correspondences

Pulling back presymplectic forms

pωq : X → A2,cl(−, n) (pre)symplectic, f : Y → X . Then pf ∗ωq : Y f−→ X pωq−−−→ A2,cl(−, n)

(Pre-)Lagrangian structures

Isotropic structure on f : Y → X
relative to ω ∈ A2,cl(X , n):
trivialisation f ∗ω '−→ 0 in A2,cl(Y , n)

Y X

∗ A2,cl(−, n)

f

pωq

0

=
correspondence
(∗, 0)→ (X ,ω)
in Span(dSt/A2,cl(n))

=⇒ Lagrangian corresp. (Y , ψ)→ (X ,ω) is

Z

Y X

A2,cl(−, n)

nondegen.
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Shifting phenomena in symplectic geometry

Delooping (Calaque)
A Lagrangian structure on X → (∗, !ω(n+1)) is an n-symplectic structure on X

Lagrangian intersections (Pantev–Toën–Vaquié–Vezzosi)
L1 ×X L2 L1

L2 X

y
Lagr.

Lagr.
with X n-symplectic =⇒ L1 ×X L2 is (n − 1)-symplectic

Ex.: Recover derived critical loci: 0, ddR f : V → T∨[n]V Lagrangian

Quotients of symplectic groupoids (Calaque–Safronov)
G• n-shifted symplectic groupoid =⇒ |G•| (n + 1)-symplectic stack
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Atlases and groupoids for algebraic derived stacks

An n-Artin derived stack X admits an atlas $ : U � X where
I U is a union of affine derived schemes,
I $ is smooth with (n − 1)-Artin fibres.

Taking the kernel (aka nerve) of the surjection $: get a groupoid G• (in dSt)

· · · G2 = U ×X U ×X U G1 = U ×X U G0 = U

where:
I Gi is a union of (n − 1)-Artin stacks
I Gi+1 → Gi is smooth with (n − 1)-Artin fibres

and X = |G•| = colim−→ G•
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Groupoids in general

Notation: For f : [k]→ [n] in ∆, write Xn → X{f (1),...,f (k)} = Xk

Internal categories
A category object in an ∞-category C is a simplicial object X• : ∆

op → C such that the
Segal cone

{
Xn → X{i,i+1} = X1

}
06i6n exhibits Xn = X1 ×

d0,X0,d1
· · · ×

d0,X0,d1
X1

X• is further a groupoid object if, equivalently:
I Unordered Segal decomposition(s): X2

'−→ X{0,1} ×
X{0}

X{0,2} and X2
'−→ X{1,2} ×

X{2}
X{0,2}

I Compatible S•+1-actions (in fact only need the sub-C•+1-actions)

A monoid in C  internal category Bar• A with Barn A = An.
Groupoid iff A is a group.
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Groupoids in general

Notation: For f : [k]→ [n] in ∆, write Xn → X{f (1),...,f (k)} = Xk

Internal categories
A category object in an ∞-category C is a simplicial object X• : ∆

op → C such that the
Segal cone

{
Xn → X{i,i+1} = X1

}
06i6n exhibits Xn = X1 ×

d0,X0,d1
· · · ×

d0,X0,d1
X1
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Shifted symplectic groupoids

A2,cl(n) abelian group =⇒ groupoid Bar• A2,cl(n) in dSt.

Definition (Shifted presymplectic groupoid)
An n-shifted symplectic groupoid is a groupoid G• in dSt over Bar• A2,cl(n)

Consequences

I For any k , map Gk
(pθ1q,...,pθkq)−−−−−−−−−−→ A2,cl(n)k ! k n-symplectic structures θi on Gk

I Isotropic correspondence γk : Gk
1 ← Gk → G1

G• is n-symplectic if the γk are Lagrangian correspondences

David Kern (KTH) Shifted cotangent groupoids 26th October 2023 12 / 25



Shifted symplectic groupoids

A2,cl(n) abelian group =⇒ groupoid Bar• A2,cl(n) in dSt.

Definition (Shifted presymplectic groupoid)
An n-shifted symplectic groupoid is a groupoid G• in dSt over Bar• A2,cl(n)

Consequences

I For any k , map Gk
(pθ1q,...,pθkq)−−−−−−−−−−→ A2,cl(n)k ! k n-symplectic structures θi on Gk

I Isotropic correspondence γk : Gk
1 ← Gk → G1

G• is n-symplectic if the γk are Lagrangian correspondences

David Kern (KTH) Shifted cotangent groupoids 26th October 2023 12 / 25



Symplectic presentations

Proposition (Calaque–Safronov)

An n-presymplectic structure ω• on G• induces an (n + 1)-shifted isotropic structure on
G0 � |G•|. It is Lagrangian (in part. |G•| is (n + 1)-symplectic) iff ω• is symplectic.

Theorem (Calaque–K.)
X = |G•| derived Artin stack with atlas G•. Then T∨[n + 1]X admits a presentation by a
symplectic groupoid given in level k by

N∨[n]
(
Gk → Gk+1

1 = G{0,1} × · · · × G{k−1,k} × G{0,k}
)

For BG = |Bar• G |

N∨[n](Gk → Gk × G) ' (T∨[n]G)×G Gk = VGk (g∨[n]⊗ OGk ): quotient by adjoint G-action
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First ingredient: functoriality of cotangent bundles
f : Y → X morphism of Artin derived stacks: there is a Lagrangian correspondence

T∨[n]X ×X Y

' N∨[n](Y /X × Y )

T∨[n]Y T∨[n]X .

More generally, for any span Y g←− Z f−→ X of Artin derived stacks, Lagrangian

N∨[n](Z/X × Y )

T∨[n]Y T∨[n]X .

Upshot: ∞-functor T:

Span(

dSt

)
(

T∨[n]

,N∨[n])

−−−−−−−−−→ LagCorr(n) ⊂ Span(dSt/A2,cl(n))
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Groupoids and algebras in spans

Problem: T has no reason to send a groupoid in dSt to a groupoid in dSt/A2,cl(n).
If T does not preserve groupoids in arrows, what does it preserve?

Remark:
1. For any C with limits, Span(C) has a monoidal structure “×” by C“×”D = C × D
2. If (M,+) is a monoid in C, monoidal structure on Span(C/M) with

C

M
f �

D

M

g =

C × D

M ×M M

f ×g f �g

+

Our T is a monoidal functor Span(dSt)“×” → LagCorr(n)�
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Contents - Section 3: Calabi–Yau monads and correspondences

1 Shifted cotangent bundles

2 Shifted symplectic groupoids

3 Calabi–Yau monads and correspondences
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Groupoids as algebras in spans

X• category object in C

 X1 is an algebra in Span(C) with

I unit given by
X0

∗ X1

s0

I multiplication
X2

X1 × X1 X1 ×X0 X1 X{0,2} = X1

'
(d2,d0)

d1

X• groupoid: cyclic actions τ : Xn+1
'−→ Xn+1 give Calabi–Yau (aka Frobenius) structure

Problem: Not all (CY) algebras arise this way: (d2, d0) isn’t always an iso
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2-Segal objects

Definition
A 2-Segal object in C is X• : ∆

op → C such that for any N > 3,

Xn
'−→ X{0,1,2} ×

X{0,2}
. . . ×

X{0,n−2}
X{0,n−2,n−1} ×

X{0,n−1}
X{0,n−1,n}

and
Xn

'−→ X{0,1,n} ×
X{1,n}

. . . ×
X{n−3,n}

X{n−3,n−2,n} ×
X{n−2,n}

X{n−2,n−1,n}

For N = 3
0 1

3 2

→
0 1

3 2

←
0 1

3 2
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The algebra of 2-Segal objects

Theorem (Penney, Gal–Gal, Stern)
There is an equivalence of ∞-categories between (cyclic) 2-Segal objects in C and (CY)
algebras in Span(C).

Lemma (Calaque–K.)

For any cyclic 2-Segal X•, the 1-Segal map X2
(d2,d0)−−−−→ X{0,1} ×X{1} X{1,2} admits a section.

Proof.

γ : X{0,1} ×X{1} X{1,2}
s1×s0(τ

2◦s0)−−−−−−−−→ X{0,1,3} ×X{1,3} X{1,2,3}
(d2,d0)

−1
−−−−−−→ X{0,1,2,3}

d3−→ X{0,1,2}

(
0 1f

, 1 2g )
7→

 0 1

3

f

f
id

,

1

3 2

gid

g−1

 7→
0 1

3 2

7→
0 1

3 2

f

gf
g
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Refining the algebra structure
γ section of (d2, d0) =⇒ X• is 1-Segal iff γ ◦ (d2, d0) = idX2

Problem: 1-Segal condition is X1 ×X0
X1

'←− X2, but algebra only knows X1 × X1 ← X2

 Replace monoidal structure “×” by ×
d0,X0,d1

Requires: know that X1 lives over X1, in two different ways d1, d0
 Composition in an (∞, 2)-category (rather, double ∞-category) where

X0 ← X1 → X0 are 1-arrows

and spans are the 2-arrows

Double ∞-category of

iterated

spans

Composition

X1 ×X ′
0

X ′
1

X1 X ′
1

X0 X ′
0 X ′′

0

y
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Monads in double categories

A monad in a double ∞-category K is: horizontal endomorphism X0
t−→ X0 with cells

X0 X0

X0 X0

idX0

t

η and
X0 X0

X0 X0

t◦t

t

µ associative and unital

=⇒ = monoid in homhor(X0,X0)

Theorem (Dyckerhoff–Kapranov)
Every 2-Segal object X• in C gives rise to a monad H(X•) in Span2(C)
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Triple ∞-category of iterated spans

Questions
1. What about going back, from algebras in spans to 2-Segal objects?
2. How to understand the 1-Segal condition?
3. What about morphisms?

The triple ∞-category Span+
2 (dSt)

Now 3 directions for
arrows: horizontal, vertical, transversal
cells: horizontal, vertical, basic

+ cubes (maps between iterated spans)

=⇒ Basic monads recover the Theorem

· · ·

· · · ·

· · · ·

· · ·
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The joys of companionship

Companion pairs in Span+
2 (dSt)

The basic cell

A C B

A C B

X Z Y
f h g

is characterised as companion to
A C B

X Z Y
f h

g

Universal characterisation (adjunction-style)

First consequence

Unit cell of H(X•) is:

X0 X0 X0

X0 X0 X0

X0 X1 X0

s0

 must be a companion
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Companion cells and the 1-Segal condition

Observation
Considering only the companion (basic) cells in Span+2 (C) recovers Span+1 (C)

Corollary
Gregarious monads (structure cells are companions) in Span+2 (C) are monads in Span+1 (C)
(Note: gregarious in Span+2 (C) ⇐⇒ 1-Segal condition)

Lemma (Bénabou, Haugseng)
Monads in Span+1 (C) are categories in C

Likewise: CY monads in Span+2 (C) are cyclic 2-Segal objects, and groupoids iff the
structure cells are companions (i.e. satisfy 1-Segal)
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Orthomorphisms and isotropic structures
An orthomorphism of (basic) monads is a transversal morphism between them

X0 T ×
X0

T X0

X0 Y0 S ×
Y0

S Y0

X0 Y0 µS Y0

Y0 S Y0

f
ϕ×f ϕ

f

f

f

Proposition
Orthomorphisms between (CY) monads in Span+2 (C) correspond to morphisms between
(cyclic) 2-Segal objects: equivalence MndCY⊥ (Span+2 (C)) ' 2-SegS1

(C)

Lemma
For any monoid A in C, equivalence MndCY⊥ (Span+2 (C/A))

'−→MndCY⊥ (Span+2 (C))/A

Taking A = A2,cl(n), get: n-shifted isotropic groupoids 'Mnd
CY,gr.
⊥ (Span+2 (dSt/A2,cl(n)))

Conclusion: Grpd(dSt) Mnd
CY,gr.
⊥ (Span+2 (dSt)) (T∨[n],N∨[n])

Mnd
CY,gr.
⊥ (Span+2 (dSt/A2,cl(n))) Grpd(dSt)/Bar• A2,cl(n)

'

'
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Proposition
Orthomorphisms between (CY) monads in Span+2 (C) correspond to morphisms between
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Backup
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Shifting and delooping for presymplectic forms

Lemma (looping-delooping)
Ω0A

2,cl(n + 1) := ∗ ×
A2,cl(n+1)

∗ ' A2,cl(n), and conversely Bar• A2,cl(n) presents A2,cl(n + 1)

Corollary
G• n-shifted presymplectic groupoid =⇒ (n + 1)-shifted isotropic G0 → |G•|

Fact: “Quotient” colim−→ : C∆op → Ar(C) = C→ is left-adjoint to ker• : Ar(C)→ C∆op

Observation: ker•(∗ → A2,cl(n + 1)) ' Bar• A2,cl(n)

=⇒ G• → Bar• A2,cl(n) corresponds
to morphism of quotient maps

G0 |G•|

∗ A2,cl(n + 1)

pωq
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Non-degeneracy for isotropic correspondences

Classical Lagrangians

TL/X TL

0 N∨
L T∨

X |L T∨
L 0

' ω|TL
ω|L=0

For shifted isotropic correspondences

L X

Y A2,cl(n)

f

g Lagrangian if
TL f ∗TX ' f ∗LX [n]

g∗TY ' g∗LY [n] LL[n]
p

cocartesian
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Link with classical symplectic groupoids

Lemma (Calaque–Safronov)
G• n-shifted symplectic groupoid. Then the n-presymplectic structure on G1 is symplectic.

Proof.
G0 → |G•| n-Lagrangian =⇒ G1 ' G0 ×|G•| G0 n-symplectic

Proposition (Calaque–Safronov)
G• n-presymplectic groupoid, and suppose we know G1 is n-symplectic. TFAE:
1. γ0 : ∗ ← G0 → G1 is non-degenerate (i.e. Lagrangian),
2. γ2 : G2

1 ← G2 → G1 is non-degenerate,
3. all the γk are non-degenerate.
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