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1 Smoothness vs smoothness

Definition 1.1 (Strong modules). Let A be a connectiveE∞-ring spectrum. An A-module M
is strong if for every n ∈ Z, the canonical map π0(M)⊗π0Rπn(R) → πn(M) is an isomorphism
of abelian groups.

An A-algebra A → B is strong if B is strong as an A-module.

Recall that we have the following:

Lemma 1.2 ([HA, Remark 7.2.4.22]). A connective A-module M has Tor-amplitude 0 if and
only if M is strong and π0M is (classically) flat.

Lemma 1.3 ([SAG, Lemma B.1.3.3]). Let B be an A-algebra of finite presentation. Then
LB/A = 0 if and only if B is strong and π0A → π0B is (classically) étale.

This suggests a first definition of smoothness.

Definition 1.4 (Fibre smoothness). A morphism φ : A → B of connective E∞-ring spectra
is fibre smooth if it is strong and π0φ is classically smooth.

The name is justified by the following result, which shows that fibre smoothness can
be expressed as a condition on geometric fibres.

Proposition 1.5 ([SAG, Proposition 11.2.3.6]). A morphism φ : A → B almost of finite
presentation is fibre smooth if and only if for every geometric κ-point A → κ, with κ an algeb-
raically closed field, κ⊗A B is a truncated ring which is (classically) regular.

The classical theory of smoothness suggests that we should understand this defini-
tion in terms of lifting against nilpotent closed immersions.

Proposition 1.6 ([SAG, Corollary 11.2.4.2]). Let φ : A → B be a flat morphism of connective
E∞-ring spectra such that π0B is finitely presented over π0A. The following are equivalent:

• φ is fibre smooth,
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• for every surjection of (truncated) commutative rings R → R with nilpotent kernel, every
solid diagram

A R

B R

(1)

admits a dashed lift.

It thus appears that the notion of fibre-smoothness is not fully satisfying, in that it
is not derived enough to capture non-truncated nilpotent quotients. In fact, we can
quantify more precisely the failure to see non-truncated structure.

Lemma 1.7 ([Stacks, Tag 07BU and Tag 00TC] or [SAG, Proposition 11.2.4.1]). Let A and
B be classical commutative rings, and A

φ−→ B a map of finite presentation. The following are
equivalent:

• φ is smooth

• for every prime p of B, π1(LB/A)p = 0 and Ω1
B/A,p ≃ π0(LB/A)p is a (classically) projective

(iff finite free, iff flat) Bp-module,

• τ≤1LB/A is equivalent to a finite (classically) projective B-module in degree 0.

Thus, the notion of fibre smoothness only considers the 1-truncation of the cotangent
complex, not all of its degrees. To obtain a fully “derived” or spectral notion, it thus
seems natural to replace the projectivity hypothesis on Ω1

B/A by one on LB/A.

Lemma 1.8 ([SAG]). For A → B be a morphism of connective E∞-ring spectra, the following
are equivalent:

• the cotangent complex LB/A is projective (as a connective B-module),

• every lifting problem such as in eq. (1) but with R → R any map of connective E∞-ring
spectra inducing on π0 a surjection with nilpotent kernel admits a solution.

Definition 1.9 (Differential smoothness). A map satisfying the equivalent conditions above
is said to be formally differentially smooth. A map f is differentially smooth if it is form-
ally differentially smooth and π0f is finitely presented.

Remark 1.10. If φ is differentially smooth, its cotangent complex (which, by definition,
is projective) has finite rank. This is because π0Lφ is Ω1

π0φ
, which is finitely presented.

Remark 1.11 ([SAG, Remark 11.2.2.3]). A map φ is differentially smooth if and only if
it is locally (or equivalently, just almost) of finite presentation and Lφ is a flat module
(i.e., of Tor-amplitude 0). This justifies the mild generalisation of quasismooth maps as
those whose cotangent complex has Tor-amplitude concentrated in [0, 1].
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Example 1.12 ([SAG, Proposition 11.2.4.4.]). If A is a Q-algebra (which is equivalent to
π0A being a Q-algebra), an A-algebra is fibre smooth if and only if it is differentially
smooth.

Example 1.13 (Standard smooth maps). The canonical map A → A{x1, . . . , xn} = SymA(A
n)

is differentially smooth; indeed LA{x1,...,xn}/A ≃ An.

Proposition 1.14 ([SAG, Proposition 11.2.2.1]). A finitely presented morphism A → B of
connective E∞-ring spectra is differentially smooth if and only if there exists a collection of
elements b1, . . . , bk ∈ π0B generating its unit ideal, and étale maps A{x1, . . . , xni

} → B[b−1
i ]

(so a factorisation of A → B[b−1
i ] as a composition of a standard smooth map and an étale map).

We now globalise these notions.

Lemma 1.15 ([SAG, Propositions 11.2.5.1–11.2.5.4]). The conditions of being fibre smooth
and differentially smooth are étale-local on the (geometric) source and fppf-local on the (geomet-
ric) target.

Definition 1.16. A morphism f : X → Y of spectral Deligne–Mumford stack is differentially
smooth (resp. fibre smooth) if for any commutative square

SpétB X

SpétA Y

g f (2)

in which the horizontal maps are étale, the map g♯ : A → B is a differentially smooth (resp. fibre
smooth) map of connective E∞-ring spectra.

Finally, we can see that the globalised notions of smoothness are compatible with the
global cotangent complex.

Theorem 1.17 ([SAG, Proposition 17.1.5.1, Proposition 17.3.9.4]). A morphism f : X → Y

of spectral Deligne–Mumford stack such that π0f is (classically) locally of finite presentation is
differentially smooth (resp. fibre smooth) if and only if it satisfies any (equivalently, all) of
the following equivalent conditions:

1. the global cotangent complexLX/Y is locally free of finite rank (resp., f is flat and π1(LX/Y |Spét κ) ≃
0 for any κ-point of X),

2. for any connective E∞-ring spectrum (resp., any classical commutative ring) A and any
A point ξ : SpétA → X, ξ∗LX/Y is a projective A-module (resp., τ≤1ξ

∗LX/Y is project-
ive),

3. for any connective E∞-ring spectrum (resp., any classical commutative ring) A and any
square-zero extension Aη of A by a connective (respr., truncated) A-module, any solid
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lifting problem
SpétA X

SpétAη Y

(3)

admits a dashed solution.

2 Affine spaces and projectives spaces

Definition 2.1. Let M be anE∞-monoid in types. For anyE∞-ring spectrum R, we set R[M] :=
R ⊗S Σ∞M, endowed with its structure of cogebra in R-algebras, which is cogrouplike if and
only if M is grouplike.

Example 2.2. Let F be the free monoid on one generator, and F → F

its group comple-
tion.

We have
F ≃ F inSet≃ ≃

∐
n∈N

BSn (4)

and, by the Barratt–Priddy–Quillen theorem,

F ≃
∐
n∈Z

BS∞. (5)

Note that, by formal nonsense, we also have

F ≃ Ω∞S.
By combining universal properties, it is clear that R[F ] ≃ R{t} = SymR(R) is the free R-

algebra on one generator. Likewise, R[Fn] ≃ R{t1, . . . , tn} = SymR(R
⊕n). Concomitantly,

one can see (cf. [Gre17, Proposition 2.1.7]) that R[

F n
] =: R{t±1

1 , . . . , t±1
n } is a localisation

of R{t1, . . . , tn} at the elements t1, . . . , tn ∈ π0(R{t1, . . . , tn}).

Example 2.3. Let N be the free 0-truncated monoid on one generator, and N → Z its
group completion. We have N = τ≤0F = π0F and Z = τ≤0

F

= π0

F

so that eq. (4)
and eq. (5) give N ≃

∐
n∈N ∗ and Z ≃

∐
n∈Z ∗.

We then define, for anyE∞-ring spectrum R, the polynomial R-algebra on n generat-
ors as R[t1, . . . , tn] := R[Nn], and likewise R[t±1 , . . . , t

±
n ] := R[Zn].

Definition 2.4. Let R be anE∞-ring spectrum. The spectral affine n-space over R is An
R, =

SpétR{t1, . . . , tn}. The flat affine n-space over R is An
R,♭ = SpétR[t1, . . . , tn].

Remark 2.5. Expanding out the definition, we have that for any R-algebra A,

An
R, (T) = homR-Alg(R{t1, . . . , tn}, A) ≃ homR-Mod(R

n, A) ≃ (Ω∞A)n, (6)

recovering the expected definition of the functor of points of affine n-space. Meanwhile,
A1

R,♭(A) ≃ homE∞-Alg(∞-Grpd)(N, (Ω
∞A,×)) will be interpreted as the type of strictly

commutative elements of Ω∞A.
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Proposition 2.6. An
R, is differentially smooth over SpétR, but not flat unless R is a Q-algebra,

and An
R,♭ is fibre smooth over SpétR but not differentially smooth unless R is a Q-algebra.

Proof. Differential smoothness of An
R, is established easily from the fact (proved in [HA,

Proposition 7.4.3.14] by comparing the universal properties) that the cotangent complex
of R → SymR(M) is M⊗R SymR(M).

For An
R,♭, we use the fact that R[t1, . . . , tn] ≃

⊕
n∈N Rn, from which strongness is easily

established, and then notice that π0(R[t1, . . . , tn]) ≃ (π0R)[t1, . . . , tn].

Remark 2.7. As shown in [BM04, Theorem 5] (cf. also [Gre17, Lemma 2.2.6] for a mod-
ern proof) For any E∞-monoid M, and any E∞-ring spectrum R, we have LR[M]/M ≃
B∞Mgrp ⊗S R[M] where B∞ : E∞-Alg(∞-Grpd)gp ≃ Spcn is inverse to Ω∞.

Definition 2.8. We set Gm,R, = Spét(R{t±1}) and Gm,R,♭ = Spét(R[t±1]).

Remark 2.9. For any R-algebra A, we have Gm,R, (A) = Ω∞A×π0A π0A
×.

Definition 2.10. The spectral projective n-space is Pn
R, = (An+1

R, \ {0})/Gm,R, , and the
flat projective n-space is Pn

R,♭ = (An+1
R,♭ \ {0})/Gm,R,♭.

Proposition 2.11 ([Gre17, Theorem 2.6.18, Proposition 2.8.16]). The projective spaces ad-
mit the usual atlases by affine spaces.

In particular, Pn
R, and Pn

R,♭ are spectral algebraic spaces.

Proposition 2.12 ([SAG, Theorem 19.2.6.2, Remark 19.2.6.4]). For anyE∞-ring A, Pn
R, (A)

can be described as the equivalent types:

1. the core of the subcategory of A-Mod/An+1 on those L → An+1 admitting a retraction and
such that SymA L is a line bundle (equivalently, L projective of rank 1)

2. the type of (naturally

F

-graded) line bundles E = SymA L (so locally equivalent to A{t})
on SpétA with an

F

-equivariant map A{t0, . . . , tn} → E which is surjective on π0.

Proposition 2.13 ([Gre17, Remark 2.8.18]). For any E∞-ring A, Pn
R,♭(A) is the type of (nat-

urally Z-graded) flat line bundles E (locally equivalent to A[t]) with a Z-equivariant map of
algebras A[t0, . . . , tn] → E which is surjective on π0.

3 Derived algebraic geometry

3.1 Animation

Definition 3.1.1 (Animation). Let C be a cocomplete 1-category generated under 1-colimits
(so, equivalently by [ČS19, (5.1.1.1)], under sifted 1-colimits) by its subcategory Csfp of objects
strongly of finite presentation (aka compact projective). The animation of C, denoted Ani(C),
is the ∞-category freely generated under sifted colimits by Csfp.
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Explicitly, this means that, for any ∞-category D with sifted colimits, an ∞-functor
F : Csfp → D determines an essentially unique sifted colimits-preserving ∞-functor
LF : Ani(C) → D, which restricts to F on Csfp ⊂ Ani(C).

Remark 3.1.2 (Why sifted colimits?). Recall that an algebraic theory (or Lawvere theory)
is a 1-category T with finite products, and a model of T is a product-preserving functor
T → Set. Then, by [ARV10, Theorem 4.13], the category of models of T is the sifted
colimits completion of Top.

Thus, the idea of animation is that if we can present C is the category of models of
the algebraic theory Csfp, then Ani(C) is the ∞-category of models of Csfp seen as an
“algebraic ∞-theory”.

Proposition 3.1.3 (Quillen, Bergner, [HTT, Corollary 5.5.9.3]). Let C be as above and such
that Csfp admits finite products. Then Ani(C) can be modelled (through an appropriate model
structure) by the category of finite product-preserving functors Csfp,op → sSet (so, of simplicial
objects in C).

The construction of the animation of C thus recovers Quillen’s definition of the non-
abelian derived ∞-category of C (and the model structure on sC is induced from the
Kan–Quillen model structure on sSet through the monadic functor C → Set from
viewing C as a category of models of a Lawvere theory).

Example 3.1.4. • The category of sets is generated under sifted 1-colimits by the fi-
nite sets. Its animation is the ∞-category Ani(Set) ≃ ∞-Grpd of ∞-groupoids or
types (thus also known as animated sets, or simply “anima”).

• The animation of the category of groups (whose strongly finitely presented ob-
jects are the free groups on finite sets) is equivalent to the ∞-category of grouplike
E1-monoids in types. However, the animation of the category of abelian groups,
which through the Dold–Kan correspondence is equivalent to the connective de-
rived ∞-category of Z, is not equivalent to grouplike E∞-monoids in ∞-Grpd (as
the latter is the ∞-category of connective S-modules).

• The ∞-category Ani(Ring) of animated rings is, by definition, the animation of
the category of rings (whose strongly finitely presented objects are the retracts of
finite type polynomial Z-algebras). Since every retract of a polynomial algebra is
in particular a quotient, and thus a sifted colimit, of polynomial algebras, we will
generally see Ani(Ring) as the sifted colimits completion of the category Poly of
finite type polynomial Z-algebras.

Lemma 3.1.5 ([SAG, Corollary 25.1.4.3]). For any classical ring R, there is an equivalence of∞-categories Ani(R-Alg♡) ≃ Ani(Ring)R/.

We may thus define the ∞-category of animated R-algebras, for any animated ring R,
to be the slice of the ∞-category of animated rings under R.

Remark 3.1.6. The inclusion i : Poly →E∞-Ringcn determines an ∞-functor θ := Li : Ani(Ring) →
E∞-Ringcn. The image by θ of an animated ring A will be denoted A◦ and called the
underlying E∞-ring spectrum of A.
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Notation 3.1.7. For A an animated ring, we let A-Mod be the ∞-category of A◦-modules.
Remark 3.1.8. Any animated ring A can be seen in particular as an E1-algebra in anim-
ated abelian groups, and the connective part of A-Mod coincides with the ∞-category
of “animated” A-modules in this sense.

If A is a classical (truncated) ring, then A-Modcn is equivalent to Ani(A-Mod♡).
In fact, the following strenghtening of this Remark will be useful when discussing

the algebraic cotangent complex (and, later, symmetric powers).
For this, let RingMod♡ be the category of pairs of a ring and a (classical) module over

it, and let Ani(Ring)Mod
cn be the ∞-category of pairs (A,M) where A is an animated

ring and M is a connective A-module. Let finally RingModssfp be the full subcategory
of RingMod♡ on the pairs (A,M) where A is a polynomial ring of finite type and M a
free A-module of finite rank.

Lemma 3.1.9 ([SAG, Proposition 25.2.1.2]). The objects of RingModssfp provide a set of
strongly finitely presented objects generating Ani(Ring)Mod

cn under sifted colimits.
That is, Ani(Ring)Mod

cn ≃ Ani(RingMod♡).

We now turn back to animated rings themselves, and their comparison withE∞-ring
spectra.

Lemma 3.1.10 ([SAG, Proposition 25.1.5.2]). Let R be a classical commutative ring. The

functor Z-Modcn → S-Modcn ≃E∞-Alg(∞-Grpd)gp R[−]

−−→ R-Alg factors as

Z-Modcn RL[−]

−−−→ Ani(R-Alg♡)
θ−→ R-Alg (7)

where the functor RL[−] commutes with sifted colimits (and in fact with all small colimits).

This means that whenever a grouplike E∞-monoid in types M, seen as a connective
spectrum, carries a structure of Z-module, its group R-algebra carries a structure of
animated ring: R[M] ≃ (RL[M])◦.
Example 3.1.11. Applying this to Z, we find that Gm,R,♭ carries a structure of derived
scheme.

Lemma 3.1.12 ([SAG, Remark 25.1.3.6]). Let A be an animated R-algebra, for R a classical
ring. There is an ismorphism π•A

◦ ≃ π• hom(R[t], A).

This implies that we may think of hom(R[t], A) as the underlying type of the anim-
ated R-algebra A.

Proposition 3.1.13 ([SAG, Propositions 25.1.2.4, 25.1.2.2]). The ∞-functor θ : Ani(Ring) →
E∞-Ringcn is both monadic and comonadic. In particular, it is conservative and preserves both
limits and colimits (such as tensor products).

Over Q, it is even an equivalence of ∞-categories.

Remark 3.1.14. Write rect for the right adjoint to θ. Looking through the adjunction, we
find that for anyE∞-ring spectrum A, the underlying type of rect(A) is hom(Z[t],rectA) ≃
hom(Z[t], A), identified in remark 2.5 as the type of strictly commutative elements of
A.
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3.2 The algebraic cotangent complex

Construction 3.2.1. Consider the functor RingModssfp → Ring ↪→ Ani(Ring) sending a
pair (A,M) to the trivial square-zero extension A ⊕ M, seen as an animated ring. We
denote its left derived ∞-functor Ani(Ring)Mod

cn → Ani(Ring) as (A,M) 7→ A⊕L M.
As explained in [SAG, Remark 25.3.1.2], we have for any animated ring A and con-

nective A-module M an equivalence (A⊕L M)◦ ≃ A◦ ⊕M.

Note that the A-algebra A⊕L M is canonically augmented over A.

Definition 3.2.2. Let A be an animated ring. For any connective A-module M, we denote
DerA(A,M) the type hom/A(A,A⊕L M) of A-derivations of A into M.

An algebraic cotangent complex of A is an A-module LΩ1
A corepresenting the functor

M 7→ DerA(A,M).

Lemma 3.2.3. For any animated ring A, the functor M 7→ DerA(A,M) is corepresentable,
that is A admits an algebraic cotangent complex.

Remark 3.2.4 (Explicit construction of the algebraic cotangent complex). Write the anim-
ated ring A as the quotient of a simplicial object Ã•, each of whose term is a polynomial
ring of possibly infinite type (in other words, take a quasi-free resolution of A). Then
LΩ1

A is the quotient of the simplicial object A ⊗
Ã•

Ω1
Ã•/Z

.

We now wish to relate the algebraic cotangent complex of an animated ring A to the
(topological) cotangent complex of its underlying E∞-ring spectrum A◦.

Proposition 3.2.5 ([SAG, Proposition 25.3.5.1]). Let φ : A → B be a morphism of animated
rings, and suppose that there is m ≥ −1 such that fibφ is m-connective. Then fib(LB◦/A◦ →
LΩ1

A/B) is (m+ 3)-connective.

Example 3.2.6. Any map φ is (−1)-connective. It follows that fib(Lφ◦ → LΩ1
φ) is 2-

connective, i.e. the difference between the cotangent complexes always lies outside of
the “quasi-smooth domain” [0, 1].

Corollary 3.2.7 ([SAG, Variant 25.3.5.2]). For any animated ring A, fib(LA◦/S → LΩ1
A/Z)

is 2-connective.

Proof. The comparison map LA◦/S → LΩ1
A/Z factors as LA◦/S

κ−→ LA◦/Z → LΩ1
A/Z, and

fib(κ) ≃ A⊗Z LZ/S, which is 2-connective because cofib(S → Z) is 2-connective.

Theorem 3.2.8 ([Sch01, Theorem 4.4], [SAG, Corollary 25.3.3.3.]). Let A be an animated
ring. There is an E1-ring spectrum A+ such that Sp(Ani(Ring)/A) ≃ A+-Mod.

In particular, LA◦/Z carries a canonical structure of left A+-module.

Idea of proof. The functor Sp(Ani(Ring)/A) → Sp(Sp) ≃ Sp induced by the construction
(B → A) 7→ fib(B◦ → A◦) is monadic. We then take A+ to be the image of S under the
monad in question.
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Proposition 3.2.9 ([SAG, Remark 25.3.3.7]). For any morphism of animated rings A → B,
we have LΩ1

A/B ≃ A◦ ⊗A+ LA◦/B.

Proposition 3.2.10 ([Sch01, §7.9], [SAG, Proposition 25.3.4.2]). There is an equivalence of
spectra A◦ ⊗S Z

≃−→ A+.

Note however that it is only an equivalence of the underlying spectra, not of ring
spectra (necessarily so, since A◦ ⊗S Z is E∞ while A+ is only E1). Furthermore, the
natural variant Z⊗S A◦ → A+ is not an equivalence (not even of spectra).

4 Spectral and chromatic phenomena in less-commutative
geometry

4.1 Symmetric algebras and shearing

Construction 4.1.1. For any n ∈ N, consider the functor RingModsfp → RingModsfp given
by (A,M) 7→ (A,π0 Symn

AM). We denote its left derived functor as Ani(Ring)Mod
cn →

Ani(Ring)Mod
cn, (A,M) 7→ (A,L Symn

AM).
Doing the same thing with the exterior powers

∧n
A or the divided powers ΓnA instead

of the symmetric powers gives functors L
∧n

A and LΓnA .

Proposition 4.1.2 (Illusie, [SAG, Proposition 25.2.4.2]). Let A be an animated ring and M

a connective A-module. For every n ≥ 0, there are equivalences of A-modules

L Symn
A(ΣM) ≃ ΣnL

∧n
AM and L

∧n
A(Σm) ≃ ΣnLΓnA(M). (8)

Lemma 4.1.3 ([SAG, Construction 25.2.2.6]). For any animated ring A and connective A-
module M, the total symmetric power L Sym•

A(M) :=
⊕

n≥0 L Symn
A(M) admits a canonical

structure of animated ring.
Furthermore, the functor

Ani(Ring)Mod
cn → F un([1],Ani(Ring))

(A,M) 7→ (A → L Sym•
AM)

(9)

is left-adjoint to (A → B) 7→ (A,B◦).

If we wish to obtain exterior and divided power algebras, we need to consider the
appropriate shifts in every position. For this, it is useful to remember that L Sym•

AM is
a Z-graded animated ring. Indeed, we wish to obtain animated ring structures on the
graded modules

L ∧•
A M = Σ−•L Sym•(ΣM) and LΓ•AM = Σ−2•L Sym•(Σ2M), (10)

that is on the shearings of L Sym•
AM. In fact, we will focus on the even shearing as the

odd ones are less understood.
In fact, to simplify matters, we will use the fact that the grading is actually an N-

grading (since shearing Z-gradings requires the use of non-connective derived rings,
and is poorly behaved).
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Lemma 4.1.4 ([Lur15, Proposition 3.4.5]). There is a Z-gradedE2-ring spectrum S[β], whose
underlying graded E1-ring spectrum is freely generated by Σ−2S(1), i.e. by a generator in
degree 2 and weight 1.

More specifically, multiplication by βn provides an equivalence Σ−2nS → S[β]n.

However, this E2-structure is provably not E3; indeed there is an explicit topological
extension to it extending to an E3-structure.

Corollary 4.1.5 ([ABM22, Proposition 3.1]). There is an E2-monoidal equivalence Spgr →
Spgr given by (Mi) 7→ (Σ2iMi).

Remark 4.1.6. By [Rak20, Proposition 3.3.4], the shearing functor admits anE∞-monoidal
structure over Z.

4.2 Spectral skew-fields and chromatic heights

Lemma 4.2.1. Let A be an E1-ring spectrum. The following are equivalent:

• π•A is a graded skew-field, that is every nonzero homogeneous element is invertible,

• every classical graded π•A-module is free,

• every A-module (spectrum) is free.

Definition 4.2.2. An E1-ring spectrum A satisfying the equivalent conditions of the lemma is
said to be a spectral skew-field.

If A is further endowed with a structure of E∞-ring spectrum, we say it is a spectral field.

Definition 4.2.3. Two spectral skew-fields A and B have the same characteristic if A⊗B ̸=
0.

Proposition 4.2.4 ([Lur24]). Let A be a spectral skew-field. Then:

• If the skew-field π0A has characteristic zero, then A has the same characteristic as Q.

• If the skew-field π0A has characteristic p > 0 and A•(BZ/(p)) = π• hom(Σ∞
+ BZ/(p), A)

has infinite rank over π•A, then A has the same characteristic as Fp.

• Otherwise, if π0A has characteristic p > 0, then A•(BZ/(p)) has rank pn over π•A for
some n ∈ N.

Theorem 4.2.5 (Morava (cf. [JW75]), [Lur10, Lecture 24 Proposition 9, Lecture 25 Corol-
lary 9]). For any (p, n) ∈ P × N, there exists a spectral skew field of π0-characteristic p and
height n: the p-local Morava K-theory of chromatic height n, denoted K(p)(n).

In particular, for any spectral skew-field A, there is (p, n) such that A carries a structure of
K(p)(n)-module.

Remark 4.2.6. For n > 0, we have π•K(p)(n) ≃ Fp[v(p),n, v
−1
(p),n] where v(p),n has degree

2(pn − 1).
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