SAG v. DGA

David KERN

KTH/SU Spectral algebraic geometry learning seminar 30th April and 8th May 2024

1 Smoothness vs smoothness

Definition 1.1 (Strong modules). Let A be a connective \mathscr{E}_{∞} -ring spectrum. An A-module M is **strong** if for every $n \in \mathbb{Z}$, the canonical map $\pi_0(M) \otimes_{\pi_0 R} \pi_n(R) \to \pi_n(M)$ is an isomorphism of abelian groups.

An A-algebra $A \rightarrow B$ is strong if B is strong as an A-module.

Recall that we have the following:

Lemma 1.2 ([HA, Remark 7.2.4.22]). A connective A-module M has Tor-amplitude 0 if and only if M is strong and π_0 M is (classically) flat.

Lemma 1.3 ([SAG, Lemma B.1.3.3]). Let B be an A-algebra of finite presentation. Then $\mathbb{L}_{B/A} = 0$ if and only if B is strong and $\pi_0 A \to \pi_0 B$ is (classically) étale.

This suggests a first definition of smoothness.

Definition 1.4 (Fibre smoothness). A morphism $\varphi \colon A \to B$ of connective \mathscr{C}_{∞} -ring spectra is *fibre smooth* if it is strong and $\pi_0 \varphi$ is classically smooth.

The name is justified by the following result, which shows that fibre smoothness can be expressed as a condition on geometric fibres.

Proposition 1.5 ([SAG, Proposition 11.2.3.6]). A morphism $\varphi: A \to B$ almost of finite presentation is fibre smooth if and only if for every geometric κ -point $A \to \kappa$, with κ an algebraically closed field, $\kappa \otimes_A B$ is a truncated ring which is (classically) regular.

The classical theory of smoothness suggests that we should understand this definition in terms of lifting against nilpotent closed immersions.

Proposition 1.6 ([SAG, Corollary 11.2.4.2]). Let $\varphi \colon A \to B$ be a flat morphism of connective \mathscr{C}_{∞} -ring spectra such that $\pi_0 B$ is finitely presented over $\pi_0 A$. The following are equivalent:

• ϕ is fibre smooth,

• for every surjection of (truncated) commutative rings $R\to\overline{R}$ with nilpotent kernel, every solid diagram

$$\begin{array}{ccc} A & \longrightarrow & R \\ \downarrow & & & \downarrow \\ B & \longrightarrow & \overline{R} \end{array} \tag{1}$$

admits a dashed lift.

It thus appears that the notion of fibre-smoothness is not fully satisfying, in that it is not derived enough to capture non-truncated nilpotent quotients. In fact, we can quantify more precisely the failure to see non-truncated structure.

Lemma 1.7 ([Stacks, Tag 07BU and Tag 00TC] or [SAG, Proposition 11.2.4.1]). Let A and B be classical commutative rings, and A $\xrightarrow{\phi}$ B a map of finite presentation. The following are equivalent:

- ϕ is smooth
- for every prime ρ of B, $\pi_1(\mathbb{L}_{B/A})_{\rho} = 0$ and $\Omega^1_{B/A,\rho} \simeq \pi_0(\mathbb{L}_{B/A})_{\rho}$ is a (classically) projective (iff finite free, iff flat) B_p-module,
- $\tau_{\leq 1} \mathbb{L}_{B/A}$ is equivalent to a finite (classically) projective B-module in degree 0.

Thus, the notion of fibre smoothness only considers the 1-truncation of the cotangent complex, not all of its degrees. To obtain a fully "derived" or spectral notion, it thus seems natural to replace the projectivity hypothesis on $\Omega^1_{B/A}$ by one on $\mathbb{L}_{B/A}$.

Lemma 1.8 ([SAG]). For $A \to B$ be a morphism of connective \mathcal{E}_{∞} -ring spectra, the following are equivalent:

- *the cotangent complex* $\mathbb{L}_{B/A}$ *is projective (as a* connective B-module),
- every lifting problem such as in eq. (1) but with $R \to \overline{R}$ any map of connective \mathscr{C}_{∞} -ring spectra inducing on π_0 a surjection with nilpotent kernel admits a solution.

Definition 1.9 (Differential smoothness). A map satisfying the equivalent conditions above is said to be *formally differentially smooth*. A map f is *differentially smooth* if it is formally differentially smooth and π_0 f is finitely presented.

Remark 1.10. If φ is differentially smooth, its cotangent complex (which, by definition, is projective) has finite rank. This is because $\pi_0 \mathbb{L}_{\varphi}$ is $\Omega^1_{\pi_0 \varphi}$, which is finitely presented.

Remark 1.11 ([SAG, Remark 11.2.2.3]). A map φ is differentially smooth if and only if it is locally (or equivalently, just almost) of finite presentation and \mathbb{L}_{φ} is a flat module (*i.e.*, of Tor-amplitude 0). This justifies the mild generalisation of **quasismooth** maps as those whose cotangent complex has Tor-amplitude concentrated in [0, 1].

Example 1.12 ([SAG, Proposition 11.2.4.4.]). If A is a Q-algebra (which is equivalent to $\pi_0 A$ being a Q-algebra), an A-algebra is fibre smooth if and only if it is differentially smooth.

Example 1.13 (Standard smooth maps). The canonical map $A \to A\{x_1, \ldots, x_n\} = \text{Sym}_A(A^n)$ is differentially smooth; indeed $\mathbb{L}_{A\{x_1, \ldots, x_n\}/A} \simeq A^n$.

Proposition 1.14 ([SAG, Proposition 11.2.2.1]). A finitely presented morphism $A \to B$ of connective \mathscr{C}_{∞} -ring spectra is differentially smooth if and only if there exists a collection of elements $b_1, \ldots, b_k \in \pi_0 B$ generating its unit ideal, and étale maps $A\{x_1, \ldots, x_{n_i}\} \to B[b_i^{-1}]$ (so a factorisation of $A \to B[b_i^{-1}]$ as a composition of a standard smooth map and an étale map).

We now globalise these notions.

Lemma 1.15 ([SAG, Propositions 11.2.5.1–11.2.5.4]). The conditions of being fibre smooth and differentially smooth are étale-local on the (geometric) source and fppf-local on the (geometric) target.

Definition 1.16. A morphism $f: X \to Y$ of spectral Deligne–Mumford stack is **differentially** *smooth* (resp. *fibre smooth*) if for any commutative square

$$\begin{array}{ccc} \operatorname{Sp\acute{e}t} B & \longrightarrow & X \\ g & & & \downarrow^{f} \\ \operatorname{Sp\acute{e}t} A & \longrightarrow & Y \end{array} \tag{2}$$

in which the horizontal maps are étale, the map $g^{\sharp} \colon A \to B$ *is a differentially smooth (resp. fibre smooth) map of connective* \mathcal{C}_{∞} *-ring spectra.*

Finally, we can see that the globalised notions of smoothness are compatible with the global cotangent complex.

Theorem 1.17 ([SAG, Proposition 17.1.5.1, Proposition 17.3.9.4]). A morphism $f: X \to Y$ of spectral Deligne–Mumford stack such that $\pi_0 f$ is (classically) locally of finite presentation is *differentially smooth* (resp. *fibre smooth*) if and only if it satisfies any (equivalently, all) of the following equivalent conditions:

- 1. the global cotangent complex $\mathbb{L}_{X/Y}$ is locally free of finite rank (resp., f is flat and $\pi_1(\mathbb{L}_{X/Y}|_{Sp\acute{e}t\kappa}) \simeq 0$ for any κ -point of X),
- 2. for any connective \mathscr{C}_{∞} -ring spectrum (resp., any classical commutative ring) A and any A point ξ : Spét A $\to X$, $\xi^* \mathbb{L}_{X/Y}$ is a projective A-module (resp., $\tau_{\leq 1} \xi^* \mathbb{L}_{X/Y}$ is projective),
- 3. for any connective \mathcal{E}_{∞} -ring spectrum (resp., any classical commutative ring) A and any square-zero extension A^{η} of A by a connective (respr., truncated) A-module, any solid

lifting problem

$$\begin{array}{ccc} \operatorname{Sp\acute{e}t} A & \longrightarrow & X \\ & & & \downarrow & & \\ & & & \downarrow & & \\ \operatorname{Sp\acute{e}t} A^{\eta} & \longrightarrow & Y \end{array} \tag{3}$$

admits a dashed solution.

2 Affine spaces and projectives spaces

Definition 2.1. Let M be an \mathscr{C}_{∞} -monoid in types. For any \mathscr{C}_{∞} -ring spectrum R, we set $\mathbb{R}^{[M]} := \mathbb{R} \otimes_{\mathbb{S}} \Sigma^{\infty} M$, endowed with its structure of cogebra in R-algebras, which is cogrouplike if and only if M is grouplike.

Example 2.2. Let \mathbb{F} be the free monoid on one generator, and $\mathbb{F} \to \neg \neg$ its group completion.

We have

$$\mathbb{F} \simeq \operatorname{Fin}\mathfrak{Set}^{\simeq} \simeq \coprod_{n \in \mathbb{N}} \mathcal{B}\mathfrak{S}_n \tag{4}$$

and, by the Barratt-Priddy-Quillen theorem,

$$\exists \simeq \prod_{n \in \mathbb{Z}} \mathcal{B} \mathfrak{S}_{\infty}.$$
(5)

Note that, by formal nonsense, we also have $\exists \simeq \Omega^{\infty} S$.

By combining universal properties, it is clear that $R^{[\mathbb{F}]} \simeq R\{t\} = Sym_R(R)$ is the **free** R-algebra on one generator. Likewise, $R^{[\mathbb{F}^n]} \simeq R\{t_1, \ldots, t_n\} = Sym_R(R^{\oplus n})$. Concomitantly, one can see (*cf.* [Gre17, Proposition 2.1.7]) that $R^{[\Pi^n]} \rightleftharpoons R\{t_1^{\pm 1}, \ldots, t_n^{\pm 1}\}$ is a localisation of $R\{t_1, \ldots, t_n\}$ at the elements $t_1, \ldots, t_n \in \pi_0(R\{t_1, \ldots, t_n\})$.

Example 2.3. Let \mathbb{N} be the free 0-truncated monoid on one generator, and $\mathbb{N} \to \mathbb{Z}$ its group completion. We have $\mathbb{N} = \tau_{\leq 0} \mathbb{F} = \pi_0 \mathbb{F}$ and $\mathbb{Z} = \tau_{\leq 0} \mathbb{T} = \pi_0 \mathbb{T}$ so that eq. (4) and eq. (5) give $\mathbb{N} \simeq \coprod_{n \in \mathbb{N}} *$ and $\mathbb{Z} \simeq \coprod_{n \in \mathbb{Z}} *$.

We then define, for any \mathscr{E}_{∞} -ring spectrum R, the **polynomial** R-algebra on n generators as $R[t_1, \ldots, t_n] \coloneqq R^{[\mathbb{N}^n]}$, and likewise $R[t_1^{\pm}, \ldots, t_n^{\pm}] \coloneqq R^{[\mathbb{Z}^n]}$.

Definition 2.4. Let R be an \mathscr{C}_{∞} -ring spectrum. The **spectral affine** n-**space** over R is $\mathbb{A}_{R,\square}^n =$ Spét R{t₁,...,t_n}. The **flat affine** n-**space** over R is $\mathbb{A}_{R,\flat}^n =$ Spét R[t₁,...,t_n].

Remark 2.5. Expanding out the definition, we have that for any R-algebra A,

$$\mathbb{A}^{n}_{\mathsf{R},\widehat{\square}}(\mathsf{T}) = \hom_{\mathsf{R}\text{-}\mathsf{Alg}}(\mathsf{R}\{\mathsf{t}_{1},\ldots,\mathsf{t}_{n}\},\mathsf{A}) \simeq \hom_{\mathsf{R}\text{-}\mathfrak{Mob}}(\mathsf{R}^{n},\mathsf{A}) \simeq (\Omega^{\infty}\mathsf{A})^{n}, \tag{6}$$

recovering the expected definition of the functor of points of affine n-space. Meanwhile, $\mathbb{A}^{1}_{\mathsf{R},\flat}(A) \simeq \hom_{\mathscr{C}_{\infty}-\operatorname{Alg}(\infty-\operatorname{Grpb})}(\mathbb{N},(\Omega^{\infty}A,\times))$ will be interpreted as the type of **strictly commutative** elements of $\Omega^{\infty}A$. **Proposition 2.6.** $\mathbb{A}^{n}_{R,\square}$ is differentially smooth over Spét R, but not flat unless R is a Q-algebra, and $\mathbb{A}^{n}_{R,\square}$ is fibre smooth over Spét R but not differentially smooth unless R is a Q-algebra.

Proof. Differential smoothness of $\mathbb{A}^n_{R,\underline{\cap}}$ is established easily from the fact (proved in [HA, Proposition 7.4.3.14] by comparing the universal properties) that the cotangent complex of $R \to \text{Sym}_R(M)$ is $M \otimes_R \text{Sym}_R(M)$.

For $\mathbb{A}_{R,\flat}^n$, we use the fact that $\mathbb{R}[t_1, \ldots, t_n] \simeq \bigoplus_{n \in \mathbb{N}} \mathbb{R}^n$, from which strongness is easily established, and then notice that $\pi_0(\mathbb{R}[t_1, \ldots, t_n]) \simeq (\pi_0 \mathbb{R})[t_1, \ldots, t_n]$.

Remark 2.7. As shown in [BM04, Theorem 5] (*cf.* also [Gre17, Lemma 2.2.6] for a modern proof) For any \mathscr{C}_{∞} -monoid M, and any \mathscr{C}_{∞} -ring spectrum R, we have $\mathbb{L}_{\mathsf{R}^{[\mathsf{M}]}/\mathsf{M}} \simeq \mathcal{B}^{\infty} \mathsf{M}^{\mathrm{grp}} \otimes_{\mathbb{S}} \mathsf{R}^{[\mathsf{M}]}$ where $\mathcal{B}^{\infty} \colon \mathscr{C}_{\infty}$ -Alg $(\infty$ -Grp $\mathfrak{d})^{\mathrm{gp}} \simeq \mathfrak{Sp}^{\mathrm{cn}}$ is inverse to Ω^{∞} .

Definition 2.8. We set $\mathbb{G}_{m,R,\hat{\square}} = \text{Sp\acute{e}t}(R\{t^{\pm 1}\})$ and $\mathbb{G}_{m,R,\flat} = \text{Sp\acute{e}t}(R[t^{\pm 1}])$.

Remark 2.9. For any R-algebra A, we have $\mathbb{G}_{m,R,\mathbb{C}}(A) = \Omega^{\infty}A \times_{\pi_0A} \pi_0A^{\times}$.

Definition 2.10. The spectral projective n-space is $\mathbb{P}^n_{R, \underline{\cap}} = (\mathbb{A}^{n+1}_{R, \underline{\cap}} \setminus \{0\})/\mathbb{G}_{m, R, \underline{\cap}}$, and the flat projective n-space is $\mathbb{P}^n_{R, \flat} = (\mathbb{A}^{n+1}_{R, \flat} \setminus \{0\})/\mathbb{G}_{m, R, \flat}$.

Proposition 2.11 ([Gre17, Theorem 2.6.18, Proposition 2.8.16]). *The projective spaces admit the usual atlases by affine spaces.*

In particular, $\mathbb{P}^{n}_{R,\cap}$ and $\mathbb{P}^{n}_{R,\flat}$ are spectral algebraic spaces.

Proposition 2.12 ([SAG, Theorem 19.2.6.2, Remark 19.2.6.4]). *For any* \mathscr{E}_{∞} *-ring* A, $\mathbb{P}^{n}_{R,\Omega}(A)$ *can be described as the equivalent types:*

- 1. the core of the subcategory of A- $\mathfrak{Mod}_{/A^{n+1}}$ on those $L \to A^{n+1}$ admitting a retraction and such that $\operatorname{Sym}_A L$ is a line bundle (equivalently, L projective of rank 1)
- 2. the type of (naturally $\neg\neg$ -graded) line bundles $E = Sym_A L$ (so locally equivalent to $A\{t\}$) on Spét A with an $\neg\neg$ -equivariant map $A\{t_0, \ldots, t_n\} \rightarrow E$ which is surjective on π_0 .

Proposition 2.13 ([Gre17, Remark 2.8.18]). For any \mathscr{E}_{∞} -ring A, $\mathbb{P}_{R,\flat}^n(A)$ is the type of (naturally \mathbb{Z} -graded) flat line bundles E (locally equivalent to A[t]) with a \mathbb{Z} -equivariant map of algebras A[t_0, ..., t_n] \rightarrow E which is surjective on π_0 .

3 Derived algebraic geometry

3.1 Animation

Definition 3.1.1 (Animation). Let \mathfrak{C} be a cocomplete 1-category generated under 1-colimits (so, equivalently by [ČS19, (5.1.1.1)], under sifted 1-colimits) by its subcategory \mathfrak{C}^{sfp} of objects strongly of finite presentation (aka compact projective). The **animation** of \mathfrak{C} , denoted $\operatorname{Ani}(\mathfrak{C})$, is the ∞ -category freely generated under sifted colimits by \mathfrak{C}^{sfp} .

Explicitly, this means that, for any ∞ -category \mathbb{D} with sifted colimits, an ∞ -functor $\mathscr{F} : \mathbb{C}^{\mathrm{sfp}} \to \mathbb{D}$ determines an essentially unique sifted colimits-preserving ∞ -functor $\mathbb{L}\mathscr{F} : \operatorname{Ani}(\mathbb{C}) \to \mathbb{D}$, which restricts to \mathscr{F} on $\mathbb{C}^{\mathrm{sfp}} \subset \operatorname{Ani}(\mathbb{C})$.

Remark 3.1.2 (Why sifted colimits?). Recall that an **algebraic theory** (or **Lawvere theory**) is a 1-category Υ with finite products, and a **model** of Υ is a product-preserving functor $\Upsilon \rightarrow \mathfrak{Set}$. Then, by [ARV10, Theorem 4.13], the category of models of Υ is the sifted colimits completion of Υ^{op} .

Thus, the idea of animation is that if we can present \mathfrak{C} is the category of models of the algebraic theory \mathfrak{C}^{sfp} , then $\operatorname{Ani}(\mathfrak{C})$ is the ∞ -category of models of \mathfrak{C}^{sfp} seen as an "algebraic ∞ -theory".

Proposition 3.1.3 (Quillen, Bergner, [HTT, Corollary 5.5.9.3]). Let \mathfrak{C} be as above and such that \mathfrak{C}^{sfp} admits finite products. Then $\operatorname{Ani}(\mathfrak{C})$ can be modelled (through an appropriate model structure) by the category of finite product-preserving functors $\mathfrak{C}^{sfp,op} \to \mathfrak{sSet}$ (so, of simplicial objects in \mathfrak{C}).

The construction of the animation of \mathfrak{C} thus recovers Quillen's definition of the nonabelian derived ∞ -category of \mathfrak{C} (and the model structure on \mathfrak{sC} is induced from the Kan–Quillen model structure on \mathfrak{sSet} through the monadic functor $\mathfrak{C} \to \mathfrak{Set}$ from viewing \mathfrak{C} as a category of models of a Lawvere theory).

- *Example* 3.1.4. The category of sets is generated under sifted 1-colimits by the finite sets. Its animation is the ∞-category Ani(Set) $\simeq \infty$ -Grpt of ∞-groupoids or types (thus also known as animated sets, or simply "anima").
 - The animation of the category of groups (whose strongly finitely presented objects are the free groups on finite sets) is equivalent to the ∞-category of grouplike *C*₁-monoids in types. However, the animation of the category of *abelian* groups, which through the Dold–Kan correspondence is equivalent to the connective derived ∞-category of *Z*, is *not* equivalent to grouplike *C*_∞-monoids in ∞-Grpð (as the latter is the ∞-category of connective S-modules).
 - The ∞-category Ani(Ring) of animated rings is, by definition, the animation of the category of rings (whose strongly finitely presented objects are the retracts of finite type polynomial Z-algebras). Since every retract of a polynomial algebra is in particular a quotient, and thus a sifted colimit, of polynomial algebras, we will generally see Ani(Ring) as the sifted colimits completion of the category Poly of finite type polynomial Z-algebras.

Lemma 3.1.5 ([SAG, Corollary 25.1.4.3]). For any classical ring R, there is an equivalence of ∞ -categories $\operatorname{Ani}(R-\operatorname{Alg}^{\heartsuit}) \simeq \operatorname{Ani}(\operatorname{Ring})_{R/}$.

We may thus define the ∞ -category of animated R-algebras, for any animated ring R, to be the slice of the ∞ -category of animated rings under R.

Remark 3.1.6. The inclusion i: $\operatorname{poly} \to \mathscr{C}_{\infty}$ - $\operatorname{Ring}^{\operatorname{cn}}$ determines an ∞ -functor $\theta \coloneqq \mathbb{L}i$: $\operatorname{Ani}(\operatorname{Ring}) \to \mathscr{C}_{\infty}$ - $\operatorname{Ring}^{\operatorname{cn}}$. The image by θ of an animated ring A will be denoted A[°] and called the **underlying** \mathscr{C}_{∞} -**ring spectrum** of A.

Notation 3.1.7. For A an animated ring, we let A-Mob be the ∞ -category of A°-modules. *Remark* 3.1.8. Any animated ring A can be seen in particular as an \mathscr{E}_1 -algebra in animated abelian groups, and the connective part of A-Mob coincides with the ∞ -category of "animated" A-modules in this sense.

If A is a classical (truncated) ring, then A- \mathfrak{Mod}^{cn} is equivalent to $\mathfrak{Ani}(A-\mathfrak{Mod}^{\heartsuit})$.

In fact, the following strenghtening of this Remark will be useful when discussing the algebraic cotangent complex (and, later, symmetric powers).

For this, let $\operatorname{Ring}\operatorname{Mob}^{\heartsuit}$ be the category of pairs of a ring and a (classical) module over it, and let $\operatorname{Ani}(\operatorname{Ring})\operatorname{Mob}^{\operatorname{cn}}$ be the ∞ -category of pairs (A, M) where A is an animated ring and M is a connective A-module. Let finally $\operatorname{Ring}\operatorname{Mob}^{\operatorname{ssfp}}$ be the full subcategory of $\operatorname{Ring}\operatorname{Mob}^{\heartsuit}$ on the pairs (A, M) where A is a polynomial ring of finite type and M a free A-module of finite rank.

Lemma 3.1.9 ([SAG, Proposition 25.2.1.2]). The objects of RingMod^{ssfp} provide a set of strongly finitely presented objects generating $\operatorname{Ani}(\operatorname{Ring})\operatorname{Mod}^{\operatorname{cn}}$ under sifted colimits. That is, $\operatorname{Ani}(\operatorname{Ring})\operatorname{Mod}^{\operatorname{cn}} \simeq \operatorname{Ani}(\operatorname{Ring}\operatorname{Mod}^{\heartsuit})$.

We now turn back to animated rings themselves, and their comparison with \mathscr{C}_{∞} -ring spectra.

Lemma 3.1.10 ([SAG, Proposition 25.1.5.2]). Let R be a classical commutative ring. The functor
$$\mathbb{Z}$$
-Mod^{cn} \rightarrow S-Mod^{cn} $\simeq \mathscr{E}_{\infty}$ -Alg(∞ -Grpd)^{gp} $\xrightarrow{\mathbb{R}^{[-]}}$ R-Alg factors as

$$\mathbb{Z}\operatorname{-Mos}^{\operatorname{cn}} \xrightarrow{\mathbb{R}^{\mathbb{L}[-]}} \operatorname{Ani}(\mathbb{R}\operatorname{-Alg}^{\heartsuit}) \xrightarrow{\theta} \mathbb{R}\operatorname{-Alg}$$

$$\tag{7}$$

where the functor $R^{L[-]}$ commutes with sifted colimits (and in fact with all small colimits).

This means that whenever a grouplike \mathscr{C}_{∞} -monoid in types M, seen as a connective spectrum, carries a structure of \mathbb{Z} -module, its group R-algebra carries a structure of animated ring: $R^{[M]} \simeq (R^{\mathbb{L}[M]})^{\circ}$.

Example 3.1.11. Applying this to \mathbb{Z} , we find that $\mathbb{G}_{m,R,\flat}$ carries a structure of derived scheme.

Lemma 3.1.12 ([SAG, Remark 25.1.3.6]). *Let* A *be an animated* R-*algebra, for* R *a classical ring. There is an ismorphism* $\pi_{\bullet}A^{\circ} \simeq \pi_{\bullet} \hom(R[t], A)$.

This implies that we may think of hom(R[t], A) as the **underlying type** of the animated R-algebra A.

Proposition 3.1.13 ([SAG, Propositions 25.1.2.4, 25.1.2.2]). The ∞ -functor θ : Ani(Ring) $\rightarrow \mathscr{C}_{\infty}$ -Ring^{cn} is both monadic and comonadic. In particular, it is conservative and preserves both limits and colimits (such as tensor products).

Over \mathbb{Q} *, it is even an equivalence of* ∞ *-categories.*

Remark 3.1.14. Write *rect* for the right adjoint to θ . Looking through the adjunction, we find that for any \mathscr{C}_{∞} -ring spectrum A, the underlying type of *rect*(A) is hom(Z[t], *rect*A) \simeq hom(Z[t], A), identified in remark 2.5 as the type of **strictly commutative elements** of A.

3.2 The algebraic cotangent complex

Construction 3.2.1. Consider the functor $\operatorname{Ring} \operatorname{Mob}^{\operatorname{ssfp}} \to \operatorname{Ring} \hookrightarrow \operatorname{Ani}(\operatorname{Ring})$ sending a pair (A, M) to the trivial square-zero extension $A \oplus M$, seen as an animated ring. We denote its left derived ∞ -functor $\operatorname{Ani}(\operatorname{Ring}) \operatorname{Mob}^{\operatorname{cn}} \to \operatorname{Ani}(\operatorname{Ring})$ as $(A, M) \mapsto A \oplus^{\mathbb{L}} M$.

As explained in [SAG, Remark 25.3.1.2], we have for any animated ring A and connective A-module M an equivalence $(A \oplus^{\mathbb{L}} M)^{\circ} \simeq A^{\circ} \oplus M$.

Note that the A-algebra $A \oplus^{\mathbb{L}} M$ is canonically augmented over A.

Definition 3.2.2. *Let* A *be an animated ring. For any connective* A*-module* M*, we denote* $Der_A(A, M)$ *the type* $hom_{A}(A, A \oplus^{\mathbb{L}} M)$ *of* A*-derivations of* A *into* M*.*

An algebraic cotangent complex of A is an A-module $\mathbb{L}\Omega^1_A$ corepresenting the functor $M \mapsto \text{Der}_A(A, M)$.

Lemma 3.2.3. For any animated ring A, the functor $M \mapsto \text{Der}_A(A, M)$ is corepresentable, that is A admits an algebraic cotangent complex.

Remark 3.2.4 (Explicit construction of the algebraic cotangent complex). Write the animated ring A as the quotient of a simplicial object \tilde{A}_{\bullet} , each of whose term is a polynomial ring of possibly infinite type (in other words, take a quasi-free resolution of A). Then $\mathbb{L}\Omega^1_A$ is the quotient of the simplicial object $A \otimes \Omega^1_{\tilde{A}_{\bullet}} \Omega^1_{\tilde{A}_{\bullet}/\mathbb{Z}}$.

We now wish to relate the algebraic cotangent complex of an animated ring A to the (topological) cotangent complex of its underlying \mathscr{C}_{∞} -ring spectrum A°.

Proposition 3.2.5 ([SAG, Proposition 25.3.5.1]). Let $\varphi \colon A \to B$ be a morphism of animated rings, and suppose that there is $m \ge -1$ such that fib φ is m-connective. Then fib($\mathbb{L}_{B^{\circ}/A^{\circ}} \to \mathbb{L}\Omega^{1}_{A/B}$) is (m + 3)-connective.

Example 3.2.6. Any map φ is (-1)-connective. It follows that fib $(\mathbb{L}_{\varphi^{\circ}} \to \mathbb{L}\Omega_{\varphi}^{1})$ is 2-connective, *i.e.* the difference between the cotangent complexes always lies outside of the "quasi-smooth domain" [0, 1].

Corollary 3.2.7 ([SAG, Variant 25.3.5.2]). *For any animated ring* A, fib($\mathbb{L}_{A^{\circ}/\mathbb{S}} \to \mathbb{L}\Omega^{1}_{A/\mathbb{Z}}$) *is 2-connective.*

Proof. The comparison map $\mathbb{L}_{A^{\circ}/\mathbb{S}} \to \mathbb{L}\Omega^{1}_{A/\mathbb{Z}}$ factors as $\mathbb{L}_{A^{\circ}/\mathbb{S}} \xrightarrow{\kappa} \mathbb{L}_{A^{\circ}/\mathbb{Z}} \to \mathbb{L}\Omega^{1}_{A/\mathbb{Z}}$, and fib $(\kappa) \simeq A \otimes_{\mathbb{Z}} \mathbb{L}_{\mathbb{Z}/\mathbb{S}}$, which is 2-connective because $\operatorname{cofib}(\mathbb{S} \to \mathbb{Z})$ is 2-connective. \Box

Theorem 3.2.8 ([Sch01, Theorem 4.4], [SAG, Corollary 25.3.3.3.]). Let A be an animated ring. There is an \mathscr{C}_1 -ring spectrum A⁺ such that $\mathfrak{Sp}(\mathfrak{Ani}(\mathfrak{Ring})_{/A}) \simeq A^+-\mathfrak{Mod}$. In particular, $\mathbb{L}_{A^{\circ}/\mathbb{Z}}$ carries a canonical structure of left A⁺-module.

Idea of proof. The functor $\mathfrak{Sp}(\mathfrak{Ani}(\mathfrak{Ring})_{/A}) \to \mathfrak{Sp}(\mathfrak{Sp}) \simeq \mathfrak{Sp}$ induced by the construction $(B \to A) \mapsto \mathrm{fib}(B^\circ \to A^\circ)$ is monadic. We then take A^+ to be the image of S under the monad in question.

Proposition 3.2.9 ([SAG, Remark 25.3.3.7]). *For any morphism of animated rings* $A \to B$, we have $\mathbb{L}\Omega^{1}_{A/B} \simeq A^{\circ} \otimes_{A^{+}} \mathbb{L}_{A^{\circ}/B}$.

Proposition 3.2.10 ([Sch01, §7.9], [SAG, Proposition 25.3.4.2]). *There is an equivalence of* spectra $A^{\circ} \otimes_{\mathbb{S}} \mathbb{Z} \xrightarrow{\simeq} A^+$.

Note however that it is only an equivalence of the underlying spectra, not of ring spectra (necessarily so, since $A^{\circ} \otimes_{\mathbb{S}} \mathbb{Z}$ is \mathscr{E}_{∞} while A^+ is only \mathscr{E}_1). Furthermore, the natural variant $\mathbb{Z} \otimes_{\mathbb{S}} A^{\circ} \to A^+$ is *not* an equivalence (not even of spectra).

4 Spectral and chromatic phenomena in less-commutative geometry

4.1 Symmetric algebras and shearing

Construction 4.1.1. For any $n \in \mathbb{N}$, consider the functor $\operatorname{RingMod}^{\operatorname{sfp}} \to \operatorname{RingMod}^{\operatorname{sfp}}$ given by $(A, M) \mapsto (A, \pi_0 \operatorname{Sym}^n_A M)$. We denote its left derived functor as $\operatorname{Ani}(\operatorname{Ring})\operatorname{Mod}^{\operatorname{cn}} \to \operatorname{Ani}(\operatorname{Ring})\operatorname{Mod}^{\operatorname{cn}}, (A, M) \mapsto (A, \mathbb{L}\operatorname{Sym}^n_A M)$.

Doing the same thing with the exterior powers \bigwedge_{A}^{n} or the divided powers Γ_{A}^{n} instead of the symmetric powers gives functors $\mathbb{L} \bigwedge_{A}^{n}$ and $\mathbb{L}\Gamma_{A}^{n}$.

Proposition 4.1.2 (Illusie, [SAG, Proposition 25.2.4.2]). *Let* A *be an animated ring and* M *a connective* A*-module. For every* $n \ge 0$ *, there are equivalences of* A*-modules*

$$\mathbb{L}\operatorname{Sym}^{n}_{A}(\Sigma M) \simeq \Sigma^{n}\mathbb{L}\bigwedge^{n}_{A}M \quad and \quad \mathbb{L}\bigwedge^{n}_{A}(\Sigma m) \simeq \Sigma^{n}\mathbb{L}\Gamma^{n}_{A}(M).$$
 (8)

Lemma 4.1.3 ([SAG, Construction 25.2.2.6]). For any animated ring A and connective Amodule M, the total symmetric power \mathbb{L} Sym[•]_A(M) := $\bigoplus_{n\geq 0} \mathbb{L}$ Symⁿ_A(M) admits a canonical structure of animated ring.

Furthermore, the functor

$$\begin{aligned} &\mathcal{A}ni(\mathcal{R}ing)\mathfrak{M}ob^{cn} \to \mathcal{F}un([1],\mathcal{A}ni(\mathcal{R}ing)) \\ & (A,M) \mapsto (A \to \mathbb{L}\operatorname{Sym}^{\bullet}_{A}M) \end{aligned}$$
(9)

is left-adjoint to $(A \rightarrow B) \mapsto (A, B^{\circ})$ *.*

If we wish to obtain exterior and divided power algebras, we need to consider the appropriate shifts in every position. For this, it is useful to remember that \mathbb{L} Sym[•]_A M is a \mathbb{Z} -graded animated ring. Indeed, we wish to obtain animated ring structures on the graded modules

$$\mathbb{L} \wedge^{\bullet}_{A} M = \Sigma^{-\bullet} \mathbb{L} \operatorname{Sym}^{\bullet}(\Sigma M) \quad \text{and} \quad \mathbb{L} \Gamma^{\bullet}_{A} M = \Sigma^{-2\bullet} \mathbb{L} \operatorname{Sym}^{\bullet}(\Sigma^{2} M), \quad (10)$$

that is on the **shearings** of \mathbb{L} Sym[•]_A M. In fact, we will focus on the even shearing as the odd ones are less understood.

In fact, to simplify matters, we will use the fact that the grading is actually an \mathbb{N} -grading (since shearing \mathbb{Z} -gradings requires the use of non-connective derived rings, and is poorly behaved).

Lemma 4.1.4 ([Lur15, Proposition 3.4.5]). *There is a* \mathbb{Z} *-graded* \mathcal{E}_2 *-ring spectrum* $\mathbb{S}[\beta]$ *, whose underlying graded* \mathcal{E}_1 *-ring spectrum is freely generated by* $\Sigma^{-2}\mathbb{S}(1)$ *, i.e. by a generator in degree 2 and weight 1.*

More specifically, multiplication by β^n *provides an equivalence* $\Sigma^{-2n} S \to S[\beta]_n$.

However, this \mathscr{C}_2 -structure is provably not \mathscr{C}_3 ; indeed there is an explicit topological extension to it extending to an \mathscr{C}_3 -structure.

Corollary 4.1.5 ([ABM22, Proposition 3.1]). *There is an* \mathscr{C}_2 *-monoidal equivalence* $\mathfrak{Sp}^{gr} \to \mathfrak{Sp}^{gr}$ given by $(M_i) \mapsto (\Sigma^{2i}M_i)$.

Remark 4.1.6. By [Rak20, Proposition 3.3.4], the shearing functor admits an \mathscr{C}_{∞} -monoidal structure over \mathbb{Z} .

4.2 Spectral skew-fields and chromatic heights

Lemma 4.2.1. Let A be an \mathcal{E}_1 -ring spectrum. The following are equivalent:

- $\pi_{\bullet}A$ is a graded skew-field, that is every nonzero homogeneous element is invertible,
- every classical graded $\pi_{\bullet}A$ -module is free,
- every A-module (spectrum) is free.

Definition 4.2.2. An \mathcal{E}_1 -ring spectrum A satisfying the equivalent conditions of the lemma is said to be a *spectral skew-field*.

If A is further endowed with a structure of \mathcal{E}_{∞} -ring spectrum, we say it is a **spectral field**.

Definition 4.2.3. *Two spectral skew-fields* A *and* B *have the same characteristic if* $A \otimes B \neq 0$.

Proposition 4.2.4 ([Lur24]). Let A be a spectral skew-field. Then:

- If the skew-field $\pi_0 A$ has characteristic zero, then A has the same characteristic as \mathbb{Q} .
- If the skew-field π₀A has characteristic p > 0 and A[•](B Z/(p)) = π_• hom(Σ₊[∞] B Z/(p), A) has infinite rank over π_•A, then A has the same characteristic as F_p.
- Otherwise, if π₀A has characteristic p > 0, then A[•](B Z/(p)) has rank pⁿ over π_•A for some n ∈ N.

Theorem 4.2.5 (Morava (*cf.* [JW75]), [Lur10, Lecture 24 Proposition 9, Lecture 25 Corollary 9]). For any $(p, n) \in \mathbb{P} \times \overline{\mathbb{N}}$, there exists a spectral skew field of π_0 -characteristic p and height n: the p-local Morava K-theory of chromatic height n, denoted $K_{(p)}(n)$.

In particular, for any spectral skew-field A, there is (p, n) such that A carries a structure of $K_{(p)}(n)$ -module.

Remark 4.2.6. For n > 0, we have $\pi_{\bullet}K_{(p)}(n) \simeq \mathbb{F}_p[\nu_{(p),n}, \nu_{(p),n}^{-1}]$ where $\nu_{(p),n}$ has degree $2(p^n - 1)$.

References

- [ABM22] Christian Ausoni, Haldun Özgür Bayındır, and Tasos Moulinos, "Adjunction of roots, algebraic K-theory and chromatic redshift", arχiv: 2211.16929
- [ARV10] Jiří Adámek, Jiří Rosický and Enrico M. Vitale, Algebraic А Categorical Introduction General Algebra, Theories to https://perso.uclouvain.be/enrico.vitale/gab_CUP2.pdf
- [BM04] Maria Basterra and Michael M. Mandell, "Homology and Cohomology of E_∞ Ring Spectra", arxiv:math/0407209
- [ČS19] Kęstutis Česnavičius and Peter Scholze, "Purity for flat cohomology", arxiv: 1912.10932
- [Gre17] Rok Gregorič, "Graded E_∞-rings and Proj in spectral algebraic geometry", repozitorij.uni-lj.si/Dokument.php?id=110662
- "BP [JW75] David Copeland Johnson and W. Stephen Wilson, Morava's extraordinary K-theories", operations and people.math.rochester.edu/faculty/doug/otherpapers/jw-morava.pdf, DOI: 10.1007/BF01214408
- [HTT] Jacob Lurie, Higher Topos Theory, math.ias.edu/~lurie/papers/HTT.pdf
- [HA] Jacob Lurie, Higher Algebra, math.ias.edu/~lurie/papers/HA.pdf
- [SAG] Jacob Lurie, Spectral Algebraic Geometry, math.ias.edu/~lurie/papers/SAG-rootfile.p
- [Lur10] Jacob Lurie, "Chromatic Homotopy Theory", www.math.ias.edu/lurie/252x.html
- [Lur15] Jacob Lurie, "Rotation Invariance in Algebraic K-Theory", www.math.ias.edu/lurie/papers/Waldhaus.pdf
- [Lur24] Jacob Lurie, "Abstract Algebra in Homotopy-Coherent Mathematics", IAS Conference on 100 Years of Noetherian Rings, https://youtu.be/FYnHPF5pL4c
- [Rak20] Arpon Raksit, "Hochschild homology and the derived de Rham complex revisited", arxiv: 2007.02576
- [Sch01] Stefan Schwede, "Stable homotopy of algebraic theories", DOI: 10.1016/S0040-9383(99)00046-4
- [Stacks] The Stacks project, stacks.math.columbia.edu