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1 The moduli problem

1.1 Definitions

We work over a fixed base scheme S = SpecZ.

Definition 1. Let X be a K3 surface. A polarisation of X is a choice of L ∈ Pic(X) which is
ample and primitive (i.e. indivisible). The degree of the polarisation is the even integer L2.

Remark 2. If L is a polarisation of degree 2d, then any smooth curve in |L| is of genus
g = d+ 1.
Recall that for any S-morphism f : X → T , the relative Picard sheaf PicX/T is the (for

our purposes étale) sheafification of the presheaf (T ′ → T) 7→ Pic(X ×T T ′)/Pic(T ′);
explicitly its value at (T ′ → T) is Γ(T ′,R1(f×T T ′)∗Gm).

Definition 3. Let T be an S-scheme. A family of polarised K3 surfaces of degree 2d para-
meterised by T is a smooth proper morphism f : X→ T endowed with L ∈ PicX/T (T) such that
the fibre (Xt,Lt) at a geometric point t : SpecΩ→ T is a polarised K3 surface of degree 2d.
If (f : X → T,L) and (f′ : X′ → T,L′) are two families of polarised K3 surfaces of degree 2d,

an isomorphism of families is given by a T -isomorphism ψ : X
'−→ X′ such that there is a line

bundle L0 ∈ Pic(T) with ψ∗L′ ' L⊗ f∗L0.
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For any family (f : X→ T,L) and any morphism (τ : T ′ → T), we have a base-changed
family of polarised K3 surfaces (f×T T ′ : X×T T ′ → T ′, (X×T τ)∗L) over T ′, making this
definition (pseudo-)functorial in T ∈ Sch/S.
We thus have, for every T ∈ Sch/S, a category Kd(T) of T -families of polarised K3

surfaces of degree 2d, and for every f : T ′ → T a base-change functor f∗ : Kd(T)→ Kd(T
′).

1.2 A reformulation of the moduli problem

As we require all K3 surfaces to be projective, they can be seen as certain subschemes of
a PN

Ω
; furthermore the datum of the embedding into PN is equivalent to the choice of a

polarisation. Hence we can view the moduli problem of polarised K3 surfaces (of some
fixed degree) as a sub-moduli problem of subschemes of a certain projective space (of
dimension depending on the degree).

Definition 4. Let P → S be a flat projective S-scheme, with the canonical polarisation OP/S(1)

and let F be a coherent OP-module. The Hilbert polynomial of F is hF ∈ Q[t] determined by
the fact that hF(i) = χ(P;F(i)) for any i ∈ Z.
If Z is a closed subscheme of P, we define its Hilbert polynomial to be that of the corresponding

ideal IZ↪→P ⊂ OP.

Example 5. If (X,L) is a polarised K3 surface of degree 2d with L very ample, then by
the Riemann–Roch theorem for surfaces h(X,L)(t) = hd(t) := dt2+2 (recall χ(X,OX) = 2
so χ(X,L) = L2

2 + 2).

Proposition 6 ([Huy5, Theorem 2.7], Saint-Donat). Let L be an ample line bundle on a K3
surface. Then L3 is very ample.

It follows that any polarised K3 (X,L) of degree 2d can be embedded in PN for N =
hd(3× 1) − 1 = 9d+ 1with OPN(1)|X = L3 and with Hilbert polynomial hd(3t).

Definition 7. Let ($ : P → S,OP/S(1)) be a flat projective S-scheme and let h ∈ Q[t]. The
Hilbert functorHilbhP/S is defined by mapping T → S to the set of closed subschemesZ of P×ST
of Hilbert polynomials h such that Z→ T is of finite presentation, flat and proper.

Construction 8 (Grothendieck). For r > 0, we may define a morphism

αr : HilbhP/S → Grass
(
hOP(r) − h(r),$∗OP(r)

)
,

(IZ � OP � Q) 7→ ker
(
$∗OP(r) � $∗Q(r)

)
.

(1)

Theorem 9 (Grothendieck). For sufficiently big r � 0, αr is an embedding of the Hilbert
sheaf as a closed subscheme of a Grassmannian.

Note that by definition, there is a universal closed subschemeZ ⊂ HilbhP/S×SP.
We let h = hd(3·).
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Lemma 10 ([Huy5, Proposition 2.1]). There exists a (locally closed, and in fact open) subs-
chemeH ⊂ Hilbh

PN
S
characterised by the following universal property:

An S-morphism T →Hilbh
PN
S
factors throughH if and only if f : ZT = Z ×Hilbh

PN
S

T → T

satisfies the conditions

1. f is a smooth family all of whose fibres are K3 surfaces;

2. writing $ : ZT → PNS for the canonical projection, there exist some L ∈ Pic(ZT ) and
L0 ∈ Pic(T) such that$∗O(1) ' L3 ⊗ L0;

3. the line bundle L of item 2 can be taken to be primitive in all geometric fibres;

4. for all fibresZt of f, restriction induces an isomorphism Γ(PNκ(s),O(1))
'−→ Γ(Zt,L

3
t).

Proposition 11. TheL in item 2 is uniquely determined (modulo line bundles coming from T).

Corollary 12. We can define for any S-scheme T → S a functor H(T) → Kd(T) by mapping
Z ⊂ PnT to (Z → T,L), and this is natural, i.e. compatible with the base-change functors
Kd(T)→ Kd(T

′).

Finally note that the natural PGLN+1-action on PN induces one on Hilbh
PN
S
, and that

the conditions characterising H are invariant under this action. Hence the functors
defined extend to functors on the action groupoids ΘT : [H(T)/PGLN+1(T)] → Kd(T)
(which can be interpreted more geometrically as an equivariant map between the ob-
jects), that is every orbit of the action is indeed mapped to an isomorphism class.

Proposition 13. The functor ΘT is an embedding.

Proof. Let f, f′ : Z,Z′ → T be closed subschemes of PNT satisfying the conditions defining
H(T), and let ψ : Z → Z′ be an isomorphism of polarised K3 surfaces, so there is an
L0 ∈ Pic(T) so that ψ∗(i∗Z′O(1)) ' i∗ZO(1)⊗ f∗L0.
Note that f∗(i∗ZO(1))⊗3 is locally free of rankN+1, and in fact the embedding iZ gives

a trivialisation of it on T . As this is also true with Z′, we have a series of isomorphisms

ON+1
T ' f′∗(i∗Z′O(1)⊗3) ' f∗(i∗ZO(1))⊗3 ⊗ L⊗3

0 ' ON+1
T ⊗ L⊗3

0 (2)

giving an element ofPGLN+1(T), which corresponds to an automorphism ofPNT exchan-
ging Z and Z′. What is more, this automorphism is the only one that can induce ψ, so
Θ is fully faithful.

2 Geometricity of the moduli problem

Proposition 14. The functor ΘT becomes essentially surjective after passing to an étale cover
of T .

3



Proof. Suppose given a family of polarisedK3 surfaces (f : X→ T,L). Once again f∗(L⊗3)
is locally trivial of rankN+1, andwemay restrict it to a cover

∐
i Ti → T to assume that it

is free. Here however wemust work with an étale cover rather than a Zariski open cover
as we used the étale relative Picard stacks so L itself need only be defined after passing
to an étale cover. Then the adjunction counit f∗f∗(L⊗3|Ti) = f∗ON+1

Ti
= ON+1

X → L⊗3|Ti
defines a closed embedding X ↪→ PN+1∐

i Ti
.

We see finally that the comparison between the moduli problem for polarised K3 sur-
faces and the action groupoid ofH under PGLN+1 cannot be performed fibrewise, but
both must be considered as global geometric objects: stacks, or homotopy sheaves of
groupoids.
Remark 15 (Motivation for stacks). The topos of étale sheaves on S is cocomplete, so it
does not lack quotients: we may always define X/G as the coequaliser of G × X ⇒ X.
The issue is that this quotient might be useless; for example if G acts trivially on X then
the coequaliser is X idX−−→ X which remembers nothing about the presence of an action.
More precisely, in a topos all epimorphisms and all equivalence relations are effective;
this means that an epi $ : E → B can be recovered as the quotient of its kernel pair
E×B E⇒ E (and vice-versa, any equivalence relation is the kernel pair of its quotient).
But in the case of a trivial action, the morphism G × X → X × X is very far from being
monic, so there is no hope of it defining an internal equivalence relation.
We need to refine the construction of the quotient by checking farther into these dia-

grams: we could consider G×G× X G× X X where the first stage at least
remembers the (non-trivial) multiplication of G and thus captures some of the inform-
ation of the group structure. This corresponds to looking at 2-equivalence relations in
a 2-category, and thus to obtain the right quotients we need to complete with respect to
the 2-colimits.
Just as the cocompletion of a small category C is its category of presheaves, its 2-

cocompletion is the 2-category of pseudofunctors Cop → Grpd, which we may call
preprestacks. To ensure that the moduli problems are sufficiently local, we should as in
the case of sheaves restrict to those pseudofunctors which satisfy descent, called stacks
(i.e. for any cover T ′ =

∐
i Ti → T the functor

F(T) 3 s 7→ (
s|T ′ = (s|Ti)i, (s|Ti |Tij

'−→ s|Tj |Tij)i,j
)

(3)

associating to each section its canonical descent datum induces an equivalence with the
category of descent data along T ′ → T). An equivalent, more explicit condition for a
preprestack to be a stack is that its morphisms presheaves be actual sheaves (i.e. morph-
isms glue “on the nose”, the onlyway they can) and that its objects glue up to isomorph-
isms. When only themorphisms glue (equivalently, when the functors in Equation 3 are
just fully faithful), we speak of a prestack.

Lemma 16. The inclusion 2-functor of stacks into preprestacks admits a left adjoint “stacki-
fication” (or associated stack) 2-functor. If F is a prestack, we may explicitly describe the sec-
tions of its associated stack F+ in the following way: an object of F+(T) is given by a covering
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T ′ =
∐
i Ti → T , a section s = (si) of F(T ′), and a descent datum for s along T ′ → T , that is

isomorphisms si|Ti×T Tj
'−→ sj|Ti×T Tj satisfying the cocycle condition.

Example 17. LetX1 ⇒ X0 be an internal groupoid in schemes (or algebraic spaces). Then
T 7→ (X1(T) ⇒ X0(T)) is not a stack, though it is a prestack, and its associated stack is
the 2-quotient.
Example 18. Consider the case (X1 ⇒ X0) = (G × X ⇒ X), where G is a group scheme
acting on a scheme X. We write [X/G] the stack quotient; the category [X/G](T) is the
category of G-torsors on T equipped with a G-equivariant morphism to X.
In particular, the classifying stack BG = [∗/G] parametrises G-torsors.
We have introduced stacks to remedy the problems which might prevent a quotient

sheaf from being a scheme. Our goal is indeed to treat them as geometric object, and
apply to them the tools of algebraic geometry, so it is necessary to have a notion of “al-
gebraicity” (or more generally, geometricity), for a stack.

Definition 19. A stack F is an Artin stack if its diagonal ∆F : F → F× F is representable by
algebraic spaces and it admits a smooth atlas U → F, that is an epimorphism of stacks which is
representable and smooth, with U a coproduct of affine schemes.
We say F is a Deligne–Mumford stack if it can be covered by an étale (rather than just

smooth) atlas.
Here a morphism of stacks p : F → G is said to be representable by algebraic spaces if, for any

morphism U → G from an affine scheme U = Spec(OU(U)), the fibre F ×G U is an algebraic
space.

Construction 20. IfF is an algebraic stack, a choice of atlasU =
∐
iUi → F gives rise to its

kernel pairU×FU =
∐
i,jUi∩Uj ⇒ U (whichwe see as an equivalence relation specify-

ing how the intersections are glued together) which is a groupoid in algebraic spaces,
both of whose structure projections are smooth (or étale if the atlas is). Conversely, the
quotient of such a smooth groupoid is an algebraic stack, and this is an equivalence of
2-categories.
In particular, a quotient by an appropriate group action is an Artin stack.

Remark 21. • Representability of the diagonal is actually implied by the conditions
on the atlas.

• A Zariski open immersion is in particular étale, so schemes are DM stacks. Algeb-
raic spaces are also DM stacks (as follows directly from their definition).

• An Artin stack is DM if and only if its diagonal is furthermore unramified.
If x : SpecΩ → X is a point of a stack, its isotropy group is the group Ω-scheme

Gx = Isom(x, x). This final remark leads to the philosophy that a DM stack is an Artin
stack with finite isotropy groups, which can be made precise:

Proposition 22 ([Stk, tags 0DSM and 0DSN]). Any Artin stack X contains a largest open
Deligne–Mumford stack XDM, called its DM locus. A point x : SpecΩ → X is in the DM
locus if and only if its isotropy group Gx is unramified overΩ.
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Finally, our fibrewise comparison can now be interpreted as follows:

Theorem 23. The 2-natural transformation of prestacksΘmade up of theΘT exhibits Kd as the
stackification of the action groupoids ofH by PGLN+1, that is Θ corresponds to an equivalence
of stacks [H/PGLN+1] ' Kd.

Corollary 24. The moduli stack Kd of polarised K3 surfaces of degree 2d is an Artin stack.

In fact, more is true: even though PGLN+1 is far from being a finite group, Kd is a DM
stack.

Proposition 25 ([Huy5, Proposition 4.10]). The diagonal of Kd is unramified.

Proof. Recall that a morphism is unramified if and only if all its geometric fibres are
reduced and discrete. Let x : SpecΩ → Kd × Kd be a geometric point; its fibre Kd,x :=
Kd×Kd×Kd

SpecΩ is the algebraic space mapping anΩ-scheme T to the sets of triples of
T -families (X0,L0), (X,L), (X′,L′) equipped with isomorphisms (X0,L0)

'−→ (X,L) and
(X0,L0)

'−→ (X′,L′) (equivalently, we can, and will, forget (X0,L0) and just consider the
single composed isomorphism). We will now see, following [Huy5, Proposition 3.3],
that for T = Speck, for any pair of polarised K3 surfaces (X,L), (X′,L′) over k, the set of
isomorphisms (X,L) '−→ (X′,L′) is a finite set of reduced points.
Let f : X '−→ X′ be such an isomorphism (compatible with the polarisations). We

identify it with its graph Γf ⊂ X× X′, whose Hilbert polynomial with respect to L� L′

is hd(2t), so that it corresponds uniquely to a k-point of Hilb
hd(2t)
X×X′ . Now in a Hilbert

scheme, the tangent space at a point [Z] corresponding to a closed subscheme Z with
ideal IZ is homk(IZ,OZ), which is furthermore identifiedwith Γ(Z,NZ) if the embedding
of Z is smooth (with normal bundle NZ).
In our case, from the identification (idX, f) : X

'−→ Γf ⊂ X × X′ and TX×X′ |Γf ' TX ⊕
f∗TX′ which splits the exact sequence 0 → TΓf → TX×X′ |Γf → NΓf/X×X′ → 0, we find
that Γ(Γf,NΓf/X×X′) ' Γ(X, f∗TX′) ' Γ(X,TX) which is trivial as X is a K3 surface. This
means that f defines a reduced isolated point ofHilb

hd(2t)
X×X′ , and as a projective scheme

can only have a finite number of irreducible components it follows that the set of such
isomorphisms is finite.

Being a Deligne–Mumford stack has several very pleasant implications on the struc-
ture of Kd.

Definition 26. A coarse moduli space for an algebraic stack X is an algebraic space X with
a morphism q : X → X which is initial among morphisms to algebraic spaces and induces an
isomorphism π0(X(k))

'−→ X(k).

Note that we also have q∗OX = OX, and in fact this property characterises q.

Theorem27 (Keel–Mori, [Ryd12, Theorem6.12]). LetX be anArtin stackwith finite inertia
(i.e. X ×X×X X → X is finite). Then X admits a coarse moduli space.
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3 Properties of the moduli stack Kd

3.1 Local structure and quasi-projectivity

Proposition 28 ([Ris06, §Approach via geometric invariant theory, afterCorollary 4.3.10]).
Let k be an algebraically closed field of characteristic 0. Then the coarse moduli space of Kd⊗Z k

is quasi-projective.

Theorem 29 (Luna’s étale slice, [AHR19, Theorem 1.1]). LetX be a quasi-separated Artin
stack and x a smooth closed point ofX whose isotropy group algebraic spaceGx is linearly reduct-
ive. Then there is an affine pointed Gx-scheme (W,w) and an étale morphism ([W/Gx], w) →
(X, x) inducing an isomorphism of isotropy groups at the selected points.

Proposition 30 ([AHR19, Theorem 2.9]). Let X be a nœtherian Artin stack admitting a
coarse moduli space q : X → X with affine diagonal, and let x be a closed point ofX. Then there
is a cartesian diagram

[W/Gx] X

W//GX X

y
q (4)

such thatW//Gx → X is an étale neighbourhood of q(x), whereW//Gx denotes the good GIT
quotient (the coarse moduli space of the stack quotient).

Hence, ifKd is smooth as aDeligne–Mumford stack, it will be étale locally the quotient
of a smooth affine scheme by a finite group.

Theorem 31. Kd ⊗Z Z[(2d)−1] is a smooth Deligne–Mumford stack of dimension 19.

As Kd is of finite type we only have to check formal smoothness. We will do this
at the level of points, or rather of their formal neighbourhoods. We thus fix a point
x : Speck → Kd, corresponding to a polarised K3 surface X over k. We will study the
smoothness of (̂Kd)x, that is of the deformation problem of (X,L).

3.2 Deformation theory of K3 surfaces

Let k be a field. For any complete local nœtherian k-algebra Λ with residue field k, we
denote ArtΛ the category of local artinian Λ-algebras with residue field k, and L̂ocΛ the
category of complete local nœtherian Λ-algebras . A functor of Artin rings (relative to
Λ) is a copresheaf on ArtΛ, a functor ArtΛ → Sets.
Example 32. Let A ∈ L̂ocΛ with unique maximal ideal mA and residue field A/mA = k.
Then we define a functor hR by restricting the covariant Yoneda embedding of R along
the inclusion ArtΛ ⊂ L̂ocΛ. For any B ∈ ArtΛ we have

hA(B) = hom
(
lim−→
n

A/mn+1A , B
)
= lim←−

n

hom(A/mn+1A , B), (5)

so any such functor is called pro-representable.
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Remark 33. Any functor of Artin ring F can be extended to a copresheaf F̂ on L̂ocΛ by
setting F̂(A) = lim←−nF(A/mn+1A ). We find a tautological correspondence between F̂(A)
and the set of natural transformations hA → F.
Recall that a surjection B→ A of localΛ-algebras is called a small extension if its ker-

nel is a principal ideal annihilated by mB and that (by [Stk, tag 06GE]) every surjection
in ArtΛ factors as a composition of small extensions.

Definition 34. A functor of Artin rings F : ArtΛ → Sets is a formal moduli problem if

• F(k) = ∗ and

• for any small extension A′ � A in ArtΛ and any morphism B → A the map F(A′ ×A
B)→ F(A′)×F(A) F(B) is bijective.

Definition 35. The tangent space to a functor of Artin rings F is F(k[ε]) (where ε is nilpotent
of order 2, i.e. k[ε] = k[ε]/(ε2)). An element ofF(k[ε]) is also called a first-order deformation
of its image in F(k) (under k[ε] � k).

Lemma 36 ([Ser06, Corollary 2.2.11]). Let F be a formal moduli problem prorepresented by
R. Then dim(R) = dimk(F(k[ε])).

Theorem 37 (Schlessinger, [Ser06, Theorem 2.3.2]). A functor of Artin rings is prorepres-
entable if and only if it is a formal moduli problem with finite-dimensional tangent space.

We will now specialise to the functor of deformations of a given k-scheme.
Example 38. Let X0 be a k-scheme. A deformation of X0 overA ∈ ArtΛ is anA-scheme X
such that X⊗A k ' X0. The deformation functor DefX0

of X0 maps A ∈ ArtΛ to the set
of isomorphism classes of A-deformations of X0.

Proposition 39 ([Ser06, Theorem 2.4.1. (ii)]). If X0 is smooth over k, then DefX0
(k[ε]) '

H1(X0,TX0
).

The cohomology class corresponding to first-order deformation ξ of X0 is called its
Kodaira–Spencer class κ(ξ).

Definition 40. An obstruction space for a functor of Artin rings F is a k-vector space o(F)
such that for everyA ∈ ArtΛ and anyA-deformation ξ ∈ F(A) there is a linearmapExt1Λ(A, k)→
o(F)whose kernel consists of the isomorphism classes of extensions Ã such that ξ is in the image
of F(Ã)→ F(A).

Lemma 41 ([Ser06, Proposition 2.2.10]). A functor of Artin rings is smooth if and only if it
is unobstructed (i.e. its obstruction space is zero).

Proposition 42 ([Ser06, Proposition 2.4.6]). Let X0 be a smooth algebraic variety. Then
H2(X0,TX0

) is an obstruction space forDefX0
.

Theorem 43 ([Ser06, Corollary 2.6.4]). If X0 is a projective scheme with H0(X0,TX0
) = 0

then DefX0
is prorepresentable. If furthermore X0 is smooth and H2(X0,TX0

) = 0 then DefX0

is prorepresentable by a (formally smooth) power series ring.
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Corollary 44. IfX0 satisfies the hypotheses of the theorem, thendim(DefX0
) = dimkH1(X0,TX0

),
so there is a (non-canonical) isomorphism ofDefX0

with the functor prorepresented by Ŝym(kh
1(X0,TX0

)).

In particular, when X0 is our K3 surface we find (from the Hodge diamond) that its
deformation functor is prorepresented by k[[x1, . . . , x20]].
Remark 45. The prorepresentability of the deformation gives a universal formal deform-
ation of X0; however it is not algebraisable, corresponding to the fact (mentioned in the
first talk) that there are non-algebraic K3 surfaces.
Finally, we must take into account the polarisation in the deformations.

Definition 46. If X0 has a polarisation L0, for any infinitesimal deformation ξ : X → SpecA
of X, a deformation of L0 along ξ consists of a line bundle L on X such that L|X0

= L0. A
deformation of (X0,L0) is by definition a deformation of X0 and a deformation of L0 along it.
We define a functor of Artin ringsDef(X0,L0)

by mappingA to the set of isomorphism classes of
A-deformations of (X0,L0).

Construction 47. SupposeX0 is a smooth algebraic variety. Then the logarithmic deRham
differential induces a morphism c : H1(X0,O

×
X0
) → H1(X0,Ω

1
X0
). As Ω1X0

is locally free,
there is an isomorphism H1(X0,Ω

1
X0
) ' Ext1OX0

(TX0
,OX0), so that cmaps any invertible

sheaf L0 to (the isomorphism class of) an OX0
-extension 0 → OX0

→ EL0
→ TX0

→ 0,
called the Atiyah extension of L0. For any n 6= 0, we have ELn

0
' EL0

.

Theorem 48 ([Ser06, Theorem 3.3.11]). Suppose X0 is a smooth algebraic variety.

• The tangent space Def(X0,L0)
(k[ε]) is H1(X0,EL0

).

• H2(X0,EL0
) is an obstruction space forDef(X0,L0)

.

• Given a deformation ξ of X0 over k[ε], there exists a deformation of L0 along ξ if and only
if 〈κ(ξ) ^ c(L)〉 = 0 in H2(X0,OX0

), where κ(ξ) is the Kodaira–Spencer class of the
first-order deformation ξ, (· ^ ·) : H1(X0,TX0

) × H1(X0,Ω
1
X0
) → H2(X0,TX0

⊗Ω1X0
)

is the cup-product of classes and 〈·〉 : H2(X0,TX0
⊗Ω1X0

) → H2(X0,OX0
) is induced by

the duality pairing.

Corollary 49. If (X0,L0) is a polarised K3 surface, thenDef(X0,L0)
is smooth of dimension 19.

Proof. In this case the cup-product H1(X0,TX0
) × H1(X0,Ω

1
X0
) → H2(X0,OX0

) ' k is
given by Serre duality and thus surjective, so for any non-trivial L0 the morphism 〈· ^
c(L0)〉 is surjective. Hence the space of possible deformations of L0, its kernel, is a
codimension 1 subspace of the 20-dimensional H1(X0,TX0

).
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