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Iwill describe the constructions and results of the paper [TV23] (arXiv:2305.13010)
by Toën–Vezzosi defining derived infinitesimal foliations, a variant of their
earlier derived foliations in positive characteristic, that unlike the latter are
always formally integrable, and relate to infinitesimal cohomology rather
thandeRhamor crystalline cohomology. The constructionwill take us through
the world of graded circles in order to capture the algebraic structures of
mixed differentials, and use ideas of non-connective derived geometry so as
to compare the different shifts between the two kinds of foliations.

1 Flashback to 2020: (infinitesimal) derived foliations in
characteristic 0

Reminder 1.1 (Classical foliations). A regular foliation on a manifoldM is a decompos-
ition of M into a union of disjoint leaves (with special charts such that the leaves ap-
pear locally as a level set of a function) of constant dimension. It induces a distribution
E ↪→ TM, with Ex consisting of the vectors tangent to the leaf at x.
By the Frobenius integrability theorem, such a distribution comes from a foliation if

and only if it is involutive, meaning that it is stable under the Lie bracket of tangent
vectors. Thus a regular foliation is equivalent to a Lie algebra (E, [−,−])with an anchor
map (E, [−,−]) → (TM, [−,−]), so a Lie algebroid, such that the anchor map is injective.
Under dualisation, the involutivity condition means that the quotient T∨M � E∨ is
characterised by its kernel being a differential ideal in dR(M) = (∧•(T∨

M), ddR).
The structure of differential ideal in dRM is the one thatwill be convenient to translate

to the derived setting. Note that in this context, the (−1)-truncatedness condition that
E → TM be an injection has no reason to exist, so we need only capture the algebraic
structure of differential ideals, also called that of a mixed graded algebra.
We note also, for the integrability, that the notion of leaves will not make sense in the

algebraic world. Tomake sense of integrability, wewill use the following reformulation:
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passing to the set of components of a foliation F defines a projection to its leaf space
M � Leaf(F), whose kernel defines a differentiable groupoid. In the algebraic setting,
we will get a formal groupoid corresponding to the projection to a formal leaf space.

Definition 1.2 (Mixed graded objects). The ∞-category of graded derived modules is
dMod

gr
k := F un(Zdiscr, dModk). For E =

⊕
i∈Z E(i) a graded module and w ∈ Z, we write

E((w)) =
⊕

i∈Z E(i+w) its weight-shifting by w.
A mixed graded structure on E is a map ε : E → E((1))[−1] (i.e. ε is a map of weight +1

and degree −1) with ε2 = 0.
We denote ε-dMod

gr
k the∞-category of mixed graded derived modules.

Remark 1.3 (Tate realisation). To make the construction clearer, let us identify dModk
with Ch(Modk)[qis−1]. The∞ functor ε-dMod

gr
k → dModk sending E to

∏
p∈Z E(p)[−2p]

with the total differential upgrades naturally to an ∞-functor |−|t : ε-dMod
gr
k → dModfilk

(by setting Fi|E|t =
∏

p≥−i E(p)[−2p]), called the Tate realisation. By [TV20b, Pro-
positon 1.3.1], it is fully faithful, and induces an equivalence with the complete filtered
modules (meaning such that FiE '−→ limj≤i(F

iE)/(FjE)).
Construction 1.4 (Redshift). There is a self-equivalence RS(−) of dMod

gr
k sending E =⊕

i E(i) to
⊕

i E(i)[−2i]. The image of a mixed graded structure ε : E → E((1))[−1] is a
(square-zero) map η = RS(ε) : RS(E) → RS(E)((1))[1].
We denote the ∞-category of such η-dMod

gr
k . On this category, the Tate construction

takes the (simpler) form E 7→ ∏
p E(p).

Remark 1.5. We have ε-dMod
gr
k ' dMod

(gr)
k[ε] and η-dMod

gr
k ' dMod

(gr)
k[η] where k[ε] ' k ⊕

k((−1))[1] and k[η] ' k ⊕ k((−1))[−1] are the square-zero extensions by a generator ε
(resp. η) of weight 1 and cohomological degree −1 (resp. 1).

Definition 1.6 (Derived foliation). Let X be a derived k-scheme of finite presentation. A
derived foliation F on X is a sheaf of mixed graded commutative derived algebras dR(F) such
that

• the (derived) OX-modules dR(F)(1)[−1] =: LF is perfect and connective (of cohomolo-
gical Tor-amplitude in (−∞, 0]),

• dR(F) is quasi-free, that is its underlying graded commutative derived algebra is freely
generated by a perfect (derived) OX-module (which is LF[1] = dR(F)(1)).

The ∞-category of derived foliations on X is the opposite of the full sub-∞-category
of the mixed graded commmutative derived OX-algebras spanned by the derived foli-
ations.
Example 1.7. • The terminal foliation 1X has L1X = LX, so that dR(1X) is the de Rham

algebra of X, with mixed graded structure induced by the de Rham differential.

• The initial foliation 0X has L0X = 0, so that dR(0X) = OX.
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Definition 1.8 (Infinitesimal derived foliation). An infinitesimal derived foliation is like
a derived foliation, except that dR(F) has a k[η]-structure instead of a k[ε]-structure, and the
connectivity condition is on LF = dR(F)(1)[1].

Remark 1.9 (Towards a geometric interpretation). Recall that a grading on a derived
stack X can be encoded, through the Rees algebra construction, as an action of the affine
group schemeGm, spectrum of theHopf algebra k[t, t−1], so equivalently amorphism to
the classifying stackBGm. We would therefore like to express a mixed graded structure
as an extension of this action to one by a larger group stack (in fact, it will be a semi-
direct product group stack, so as to encode the compatibility of themixed structurewith
the grading).
The derived algebra k[ε] is a Hopf algebra, with the usual comultiplication ε 7→ ε ⊗

1+ 1⊗ ε, and its dual Hopf algebra is k[η]. As such, k[ε]-module structures correspond
to k[η]-comodule structures and vice versa.
A k[ε]-comodule structure is equivalently an action of the group derived scheme

Spec(k[ε]) =: S1inf (thus named because k[ε] ' C•(S
1; k)), so infinitesimal derived fo-

liations can be understood as natural objects of derived geometry. But k[η] lives in the
wrong degrees for its “spectrum” to define a derived affine scheme, so the comparison
with derived foliations requires a broader context to define S1dR := Spec(k[η]) (where
k[η] ' C•(S1; k)).
Example 1.10 (Linear derived stacks). Let M be a quasicoherent derived module on a
derived stack X. We define its “total space” as the derived stack VX(M) mapping an
affine X-scheme SpecA ϕ−→ X to

VX(M)(A) := homdModA(ϕ
∗M, A).

When M is connective (i.e. has Tor-amplitude concentrated in non-positive degrees),
this is clearly the functor of points of SpecX(SymOX

M), so affine. But when M is not
connective, this description no longer gives an affine scheme.

2 Derived affine stacks

By denormalisation, connective derived algebras can bemodelled by animated (i.e. sim-
plicial, modulo weak equivalences) algebras, and coconnective derived algebras corres-
pond to cosimplicial algebras (with respect to a certain model structure). We will use
a model structure on cosimplicial simplicial algebras that mixes these two orthogonal
directions as capturing the coconnective and connective part of the same direction.
Construction 2.1 (Product totalisation of cosimplicial simplicial modules). We let csMod

denote the category of cosimplicial objects in simplicial modules. By convention, a co-
simplicial simplicial module has components Mq

p where p is the simplicial index and q

the cosimplicial one. The product totalisation of a cosimplicial simplicial module M is
the cochain complex TotΠ(M) given by

TotΠ(M)n =
∏
p≥0

Mp+n
p ,
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with differential the alternated sum of simplicial faces and cosimplicial cofaces.

Definition 2.2. A morphism M → N in csMod is a completed quasi-isomorphism if
TotΠ(M) → TotΠ(N) is a quasi-isomorphism of cochain complexes.

Theorem2.3 ([TV23, Theorem1.2]). The completed quasi-isomorphisms are theweak-equivalences
for a cofibrantly generated simplicial model structure on csMod (whose fibrations are the epi-
morphisms).

The simplicial enrichment comes from the cotensoring over sSet defined by (MX)qp =
(Mq

p)
Xq for M ∈ csMod and X ∈ sSet. It is compatible with the totalisation, that is

TotΠ(MX) ' TotΠ(M)X = holimp TotΠ(M)Xp .

Lemma 2.4. The functor TotΠ is a Quillen equivalence, so induces an equivalence between the
homotopy∞-category of the completed model structure on csMod and dMod.

Proof. Tautological.

Definition 2.5. The category of cosimplicial simplicial algebras is csAlg; it has a forgetful func-
tor to csMod. The ∞-category of completed non-connective derived algebras d̂Alg is the
homotopy∞-category of csAlg with the model structure transfered along this forgetful functor,
i.e. the localisation along the completed quasi-isomorphisms of underlying cosimplicial simplicial
modules.

Example 2.6. Consider the free cdga k[u] on a generator of degree 2 (coconnective), de-
normalised to a cosimplicial (simplicially constant) algebra, and its completion k[[u]]. Its
product totalisation has

TotΠ(k[u])n =
∏
p≥0

(k[u])p+n =


∏̀
≥0

(k[u])2`+n if n is even∏̀
≥0

(k[u])2`+1+n if n is odd,

which in cohomology looks like

Hn(TotΠ(k[u])) =


∏̀
≥0

u`+n/2k = un/2
∏̀
≥0

u`k if n is even∏̀
≥0

u`+(n+1)/2k = u(n+1)/2
∏̀
≥0

u`k if n is odd.

= udn/2e
∏
`≥0

u`k

We thus see that the finiteness condition differentiating k[u] from k[[u]] disappears
after totalisation, so that the map k[u] → k[[u]] is a completed quasi-isomorphism.
Remark 2.7. The totalisation TotΠ(M•

•) of a cosimplicial simplicial module is a model
for holimq∈∆ hocolimp∈∆op M

q
p where the homotopy colimits and limits are taken in dg-

modules (seeing each module M
q
p as a dg-module). In particular, up to completed
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quasi-isomorphism any cosimplicial simplicial algebra A•
• can be seen as a homotopy

limit of a cosimplicial diagram of connective derived algebras.
In fact, the canonical map A•

• → limA•
•→B• B• (for B• connective, so a simplicial al-

gebra seen as a cosimplicial simplicial algebra constant in the cosimplicial direction) to
the “connective completion” is a completed quasi-isomorphism.
Remark 2.8 (Graded variant). The above constructions also admit a graded variant,
where TotΠ,gr is defined by applying TotΠ weight by weight.

Definition 2.9 (Non-connective spectrum). The non-connective spectrum∞-functor is defined
as a restricted Yoneda embedding: for any A ∈ d̂Alg, the derived stack Specn.c.(A) is given by

Specn.c.(A) : dAlg 3 B 7→ hom
d̂Alg

(A,B).

Lemma 2.10 ([TV23, Proposition 1.7]). The ∞-functor Specn.c. : d̂Alg
op → dSt is fully

faithful.

Proof. The functor Spec admits a left-adjoint O(−), which at the level of the cosimplicial
simplicial model sends a sheaf K × SpecA (with SpecA = yA representable) to AK ∈
csAlgop and is determined on general sheaves by colimit preservation. Thus Specn.c.
is fully faithful if and only if the counit of the adjunction O(Specn.c.) → idcsAlgop is a
completed equivalence.
We now use the fact that Specn.c.A is the homotopy colimit of the simplicial derived

stack [q] 7→ Spec(Aq
•) (with A

q
• a simplicial algebra viewed as a connective derived

algebra). Thus the counit takes the form A → holimqA
q
• , which is an equivalence by

definition of the completed quasi-isomorphisms.

Likewise, the ∞-functor Specn.c.,gr : d̂Alg
gr,op → dStgr = Gm-dSt of graded non-

connective spectrum is fully faithful.
Remark 2.11 (Linear stacks revisited). It is now possible to say that for any derivedmod-
uleM, the linear stackV (M) of example 1.10 is the derived affine stack Specn.c.(Sym(M)).
It is shown in [Mon21, Corollary 2.9, Theorem 2.5] that, when restricted to eventually
connective (aka bounded above) derived modules, the functor V gr = Specn.c.,gr Sym is
fully faithful.
Example 2.12. For M = k[−n], we get V (k[−n]) = K(Ga, n) = Bn Ga. In fact, it can be
shown that the ∞-category of derived affine stacks is the smallest full sub-∞-category
of dSt containing the K(Ga, n)s and stable by small limits.
Note however that there is an equivalence Sym(k[−1]) ' k[η] only in characteristic

zero (due to the cohomology of the symmetric groups with coefficients in k then van-
ishing).

3 Infinitesimal derived foliations and their cohomology

Construction 3.1 (Graded circles). The infinitesimal circle is S1inf := Spec(k[ε]). Note
that it can be seen geometrically as Ω0A

1 = {0}×A1 {0}.
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The de Rham circle is S1dR := Specn.c.(k[η]). It can be obtained by [MRT19, Theorem
3.4.17] as BKwhere K is the intersection of the kernels of the p-Frobenius operators on
big Witt vectors, or equivalently (cf. [MRT19, § 6.4.1]) the free divided power algebra
on one generator.
By the standard Gm-action on the shifted copy of k (since ε and η were declared of

weight 1), both of these circles upgrade to (affine) graded derived stacks. We further let
HdR = Gm n S1dR and Hinf = Gm n S1inf be the de Rham and infinitesimal Hilbert group
stacks.
Remark 3.2. The de Rham circle S1dR ' BK is, by [MRT19, Theorem 1.2.1], the associ-
ated graded of a filtration on the affinisation of the topological circle, that is on the non-
connective spectrum Specn.c.(C•(S1)) = Specn.c.(O(S1B)) of chains on the circle (equival-
ently of global functions on its Betti shape, the constant stack S1B), appearing as inter-
section of the fixed points of the Frobenius operators on Witt vectors.
Meanwhile, S1inf is the associated graded of a filtration (realised as BGm → A1/Gm)

on the empty scheme.

Lemma 3.3. There are (symmetric monoidal) equivalences of ∞-categories QCoh(BHdR) '
ε-dModgr and QCoh(BHinf) ' η-dModgr — and so the redshift equivalence can be seen as
QCoh(BHdR) ' QCoh(BHinf).

We can thus define more generally an ε-mixed graded (resp. η-mixed graded) de-
rived stack to be a derived stack over BHdR (resp. over BHinf).
Example 3.4 (Graded loop stacks). Let X be a derived stack. The de Rham graded loop
stack of X is the derived stack of morphismsLdRX = Mor(S1dR, X), and the infinitesimal
graded loop stack of X is LinfX = Mor(S1inf, X). They carry respective actions of HdR
and Hinf, induced by the canonical such actions on the relevant graded circles.
In fact, LdRX (resp. LinfX) is the cofree HdR-equivariant (resp. Hinf-equivariant)

derived stack on the graded derived stack X×BGm (X with trivial grading).
By [HAG2, Proposition 1.4.1.6], one can also see that LdRX ' T [−1]X = V (LX[1])

is the (−1)-shifted tangent bundle of X and LinfX ' T [1]X = V (L[−1]) is its 1-shifted
tangent bundle.

Definition 3.5. Let X be a derived Deligne–Mumford stack.
A derived foliation onX is anHdR-equivariant derivedX-stackF, overLdRX as an ε-mixed

graded derived stack, such that its underlying graded derived stack is of the form V (LF[1]) for a
(uniquely determined by remark 2.11) perfect LF.
An infinitesimal derived foliation on X is an Hinf-equivariant derived X-stack F, over

LinfX as an η-mixed graded derived stack, such that its underlying graded derived stack is of the
form V (LF[−1]) for a (uniquely determined) perfect LF.

Example 3.6. We can now give the foliations of example 1.7 a geometric interpretation,
in any characteristic.

• The terminal (resp. infinitesimal) derived foliation 1X is given byLdRX
id−→ LdRX

(resp. LinfX
id−→ LinfX).
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• The initial (resp. infinitesimal) derived foliation 0X is given by theHdR-equivariant
X → LdRX (resp. theHinf-equivariantX → LinfX)mappingX to “constant loops”
— or, in the interpretation as shifted tangent bundles, the zero section.

Construction 3.7 (Crystals). LetF → LdRX be aderived foliation. Recall thatQCoh([F/HdR])
is the ∞-category of HdR-equivariant quasi-coherent modules on F = Specn.c.(dR(F)),
that is ε-mixed graded dR(F)-modules.
The projection p : F → X, while not HdR-equivariant, is Gm-equivariant (where X

is acted upon trivially), so that it lifts to [F/Gm] → X and induces p∗ : QCoh(X) →
QCoh([F/Gm]), producing the free graded dR(F)-module E = dR(F) ⊗dR(F)(0)'OX

E(0)
on a quasicoherent OX-module E(0).
A quasicoherent crystal along F is an object of QCoh([F/HdR]) whose underlying

graded (pullback to [F/Gm]) is free.
We define crystals along an infinitesimal foliation by replacing all the de Rham objects

by their infinitesimal versions in the above construction.

Definition 3.8. Let F be a derived foliation on X, and E a crystal along F. The (derived) de
Rham cohomology of X along F with coefficients in E is

Ĉ•
dR(F,E) := Γ([F/HdR],E).

If F is an infinitesimal derived foliation on X, and E a crystal along F, the (derived) infinites-
imal cohomology of X along F with coefficients in E is

Ĉ•
inf(F,E) := Γ([F/Hinf],E).

Reminder 3.9 (Infinitesimal cohomology). ForX anyderived stack, its infinitesimal shape
is the sheaf

Xinf : dAlg ∈ A 7→ X(Ared).
Note that by construction, Xinf is étale over Spec k, and in particular classical. When X

is a classical scheme, the cohomology of Xinf relates to the infinitesimal cohomology of
X in the following way.
Recall that the infinitesimal site Inf(X) has objects the pairs of an X-scheme Y◦ → X

and a closed immersion with nilpotent kernel Y◦ ↪→ Y. There is then a morphism of
sites Sch/Xinf → Inf(X) sending Y → XdR (corresponding to a map Yred → X) to the pair
(Yred → X, Yred ↪→ Y). This is not an equivalence, but the induced morphism of topoï
can be seen to be an equivalence, and so for the purposes of computing cohomology,
there is no harm in also denoting Xinf the topos presented by Inf(X): in either case, the
infinitesimal cohomology of X is Γ(Xinf,O).

Theorem 3.10 ([Toë20, Proposition 3.2.2],[TV23, Theorem 3.2]). Let X be a smooth affine
scheme.

1. If 1X,dR denotes the terminal derived foliationLdRX → LdRX, then Ĉ•
dR(1X,dR,O) is equi-

valent to the (Hodge-completed, derived) de Rham cohomology of X.

2. If 1X,inf denotes the terminal infinitesimal derived foliation LinfX → LinfX, then there is
an equivalence Ĉ•

inf(1X,inf,O) ' Γ(Xinf,O).
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4 Integrability and comparison

Definition 4.1 (Smooth infinitesimal foliation). An infinitesimal derived foliation F on X is
smooth if LF has perfect Tor-amplitude 0, and shifted smooth if LF ' V [1] with V of perfect
Tor-amplitude 0.

If X is smooth, shifted smoothness means that F = Spec(dR(F)) = VX(LF[−1]) is a
(smooth) vector bundle on X.

Lemma 4.2 ([TV23, Proposition 4.1]). Let X be a smooth scheme. The category of shifted
smooth infinitesimal derived foliations is equivalent to that of formal thickenings of X (formal
schemes Z with Zred ' X) locally equivalent to X× Âr, where r = rk(LF[−1]).

Proof. The formal scheme corresponding to F is Spf(Ĉinf(F)), where Ĉinf(F) is a sheaf
on X of (discrete) complete filtered algebras augmented to OX, with associated graded
isomorphic to OX[[t1, . . . , tr]] by the smoothness assumption. This construction is seen
to be an equivalence thanks to Tate realisation of remark 1.3 inducing an equivalence
between complete filtered modules and mixed graded modules.

Proposition 4.3 ([TV23, Corollary 4.2]). The category of smooth infinitesimal derived foli-
ations on X is equivalent to that of formally smooth groupoids on X.

Proof. Let F be a smooth infinitesimal derived foliation, and recall the initial infinites-
imal foliation 0X given by X → LinfX. The loop object ΩXF = 0X ×F 0X has cotangent
complex given by LF[1], so is shifted smooth. The same is true of the further stages of
the higher kernel (a.k.a. nerve) of the map 0X → F, so that it produces a groupoid in
shifted smooth foliations, corresponding by the above lemma to a groupoid in formal
schemes (whose 0th stage is X).
If on the other hand we have a formally smooth formal groupoid G•, with G0 = X,

passing to global functions produces a cosimplicial object O(G•) in complete filtered
algebras, whose associated graded is the cosimplicial algebra of functions on the sim-
plicial scheme B• V (presenting the stack BV = V (V [1])), where V = Ω1

G1/X
|X. Since

the Tate construction provided an equivalence between complete filtered modules and
mixed gradedmodules, this now corresponds to a simplicialmixed graded algebra. Tak-
ing degreewise spectra, and the limit of the simplicialHinf-scheme thereby obtained, we
get V (V [1]) with anHinf-action, so a smooth infinitesimal foliation.

We interpret the quotient of a formal groupoid integrating an infinitesimal derived
foliation F as its formal leaf space.
It is expected that infinitesimal derived foliations should be formally integrable in full

generality, so equivalent to derived formal groupoids. This is in contrast with derived
foliations, which can be seen to not always be formally integrable. Thus, to understand
the integrability of infinitesimal derived foliations, it will be useful to understand their
precise comparison with derived foliations.
At the level of underlying derived modules, derived foliations and infinitesimal de-

rived foliations appear to be only slight variants of one another, related through the
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redshift equivalence. However, the behaviour of the redshift on derived algebras is a
lot more subtle, and will lead to infinitesimal derived foliations being seen not just as
a variant of derived foliations, but as derived foliations equipped with an additional
infinitesimal structure, which is what allows them to be formally integrated.
Construction 4.4 (Redshift for algebras). We let Z〈u, v〉 = Z[u] ×Z Z[v], where u is a
generator in (cohomological) degree 2 and weight 1 and v in degree −2 and weight −1.
Note that this is very different from Z[u, v] as it only contains monomials purely in u or
v; in particular u · v = 0. Note also that Z[v] = Sym(Z[2]) '

⊕
n≥0 Γ

n(Z)[2n] where Γ•

denotes the free divided power algebra — so that H•(TotΠZ[v]) in weight p is Z · vp

p! .
We consider theHadamard product⊗H on graded completed non-connective derived

algebras, given by degree-wise andweight-wise tensor product of rings. We then define
the redshift endofunctor of d̂Alg asRS(−) = −⊗H Z〈u, v〉.
Via the Specn.c. functor, this provides the redshift as an endofunctor of the∞-category

of graded derived affine stacks.

Lemma 4.5. For any A ∈ d̂Alg, there is an equivalence RS(TotΠ(A)) ' TotΠ(RS(A)).

In other words, the redshift introduced here is indeed a lift of the redshift on graded
derivedmodules introduced in construction 1.4. However, unlike the redshift on graded
derived modules, the redshift on graded derived algebras is not an equivalence.

Proposition 4.6. [TV23, Lemma 5.3] If X and Y are graded derived affine stacks concentrated
in weights [−1, 0], then the canonical map RS(X× Y) → RS(X)×RS(Y) is an equivalence
away from (2) ∈ SpecZ.

Proof. Note first that if a graded algebra A is concentrated in negative weights, then
RS(A) ' A⊗HZ[v]. We then observe that the image by TotΠ of the multiplication map
Z[v](−1) ⊗ Z[v](−1) → Z[v](−2) is equivalent to Z[2] ⊗ Z[2] ' Z[4]

×2−−→ Z[4], which is
indeed an equivalence once restricted to SpecZ[1/2].

It follows that RS(S1dR ×SpecZ SpecZ[1/2]) is again a group object, which an easy
calculation shows to be equivalent to S1inf ×SpecZ SpecZ[1/2].
What is not clear is the following

Conjecture 4.7. The redshift can be extended (away from (2)) to a functor fromS1dR-equivariant,
i.e. ε-mixed, graded derived affine stacks to S1inf-equivariant, i.e. η-mixed graded, ones.

We can still, however, use this observation to get a comparison from derived foliations
to derived infinitesimal foliations.
Construction 4.8. LetF be a derived foliation onX, given as VX(LF[1])with anHdR-action.
The algebra of functions on RS(VX(LF[1])) is by definition RS(Sym(LF[1])). Then the
canonical inclusion of modules LF[1] → Sym(LF[1]), combined with the equivalence
RS(LF[1]) ' LF[−1], gives a map LF[−1] → RS(Sym(LF[1])), which through the ad-
junction property of Sym corresponds to a map of graded derived stacks

RS(VX(LF[1])) → VX(LF[−1]).
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Assume the above conjecture is true (andwork still overZ[1/2]), so thatRS(VX(LF[1]))
inherits an action ofHinf.

Definition 4.9. An infinitesimal structure on a derived foliation F is an extension of the
Hinf-action onRS(VX(LF[1])) to VX(LF[−1]) along the morphism constructed.

Conjecture 4.10. There is a forgetful functor from derived infinitesimal foliations to derived
foliations, generalising the forgetting of an infinitesimal structure.

This functor should work in the following way: RS(V (L[1])) is the divided power
completion of V (L[−1]) along its zero section, and it is expected that RS(−) induces
an equivalence between graded affine derived stacks and graded affine derived stacks
equipped with divided power structures. Thus, taking the divided power completion
of an infinitesimal derived foliation should, through this equivalence, recover a derived
foliation.
Remark 4.11. Thanks to [BCN21], the classical Koszul duality between commutative al-
gebras and Lie algebras refines to pair of Koszul dualities between, on the one hand,
divided power algebras and Lie algebras, and on the other hand, commutative algebras
and partition Lie algebras (the homotopical version of restricted Lie algebras).
The putative forgetful functor from infinitesimal derived foliations should thus ressemble,

up to Koszul duality, the forgetful functor from partition Lie algebras to Lie algebras, or
more generally, thanks to the definitions of [Fu≥23], from partition Lie algebroids to
Lie algebroids.
More precisely, [Fu≥23] constructs a Chevalley–Eilenberg algebra functor on parti-

tion Lie algebroids, whose resulting commutative algebras should be equipped with an
η-mixed graded structure induced by the Lie bracket.

Conjecture 4.12. The Chevalley–Eilenberg functor induces an equivalence of ∞-categories
between perfect partition Lie algebroids and perfect infinitesimal derived foliations.

The formal integrability of infinitesimal derived foliationswould then be a consequence
of the equivalence between partition Lie algebroids and (derived) formal moduli prob-
lems.
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