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0 Introduction: What are (ring) spectra?

The aim of this talk is to motivate spectral algebraic geometry both from the points
of view of (derived) algebraic geometry and of homotopy theory. For this, we will
view (ring) spectra in two different ways, geared towards the studies of arithmetic and
cohomology theories. But, to introduce them, motivating them from a more categorical
point of view shows why spectra are inevitable:

Slogan 0. Spectra are to ∞-categories as abelian groups are to 1-categories.

More precisely, we develop the analogy in the following table.
Category theory Higher category theory

Abelian categories Stable ∞-categories
Abelian category Ab of abelian groups Stable ∞-cat. Sp of spectra = freely stable on ∞Grpd

Abelian group of integers Z Sphere spectrum S = free on the point
Rings = commutative algebras in (Ab,⊗Z) E∞-rings = htopy coherent comm. alg. in (Sp,⊗S)

In particular, the last two lines mean that S is the initial E∞-ring spectrum.
From this, we obtain our first point of view on spectra:

Slogan 1. Spectra are S-modules, S being a “topological” base below Z.

This implies that doing geometry with ring spectra corresponds to moving from the
study of the arithmetic of the integers to the deeper arithmetic of the sphere spectrum.
We will explore the advantages of this point of view in section 1.

The second point of view on spectra, whose benefits we will reap in section 2, is as
they relate to cohomology theories.

For this, let us list some of the salient features of spectra:

• a spectrum E has a homotopy Z-graded abelian group π•E,

• a spectrum E admits shifts ΣnE for all n ∈ Z (with π•(Σ
nE) = π•−nE as expected),
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• a spectrum E has an underlying ∞-groupoid (aka type, or anima, etc.) denoted
Ω∞E (its “infinite loop space”),

• between any two spectra E and F there is a mapping spectrum hom(E, F) (making
Sp a self-enriched ∞-category), with Ω∞hom(E, F) ≃ hom(E, F) receovering the
standard hom ∞-groupoid,

• the ∞-functor Ω∞ : Sp → ∞Grpd admits a left-adjoint Σ∞ (“infinite suspension”)
producing the free spectrum generated by a type — so that we can think of it as
the “free S-module” functor X 7→ SX. In particular, S = Σ∞∗.

Thus, an informal way of thinking of slogan 1 is that spectra are a “topological”
variant of chain complexes or dg modules.

Now, given a spectrum E, and implicitly viewing topological spaces through the loc-
alisation Π∞ : TopSp → ∞Grpd, the functor E• : TopSp → AbZ-gr mapping a space X

to
E•X := π•hom(Σ∞X, E) ≃ π0hom(Σ∞X,Σ•E) ≃ π0 hom(X,Ω∞−•E) (1)

satisfies the axioms for a generalised cohomology theory (i.e., the Eilenberg–Steenrod
axioms except the dimension axiom); we thus say it is the cohomology theory repres-
ented by E.

The Brown representability theorem states that every generalised cohomology theory
arises this way, giving way to our second point of view on spectra:

Slogan 2. Spectra represent cohomology theories.

An important distinction to make, however, is that there is only a bijection between
equivalence classes of spectra and isomorphy classes of generalised cohomology theor-
ies: a spectrum contains more information than the cohomology theory it represents.
This is particularly apparent for E∞-ring spectra: the algebra structure on E induces
multiplicative operations on E•, but the simple datum of a multiplicative cohomology
theory does not capture the higher coherences of an E∞-algebra structure.

1 Homotopy theory for commutative algebra: deeper arithmetic
over the sphere spectrum

Let A be an associative ring. The group K0(A) extends to a family of higher K-theory
groups Kn(A), which are in fact the homotopy groups of a spectrum K(A). It is however
very difficult to compute, so certain approximations are used to work with it.
Construction 1.1 (Negative cyclic homology). The Hochschild complex of A is

HH(A) = A ⊗
A⊗

Z
A
A (2)

where the tensor product is implicitly derived. Seeing it as the function algebra S1⊗ZA

of the derived loop stack L SpecA = SpecA×SpecA×Spec ZSpecA SpecA, it has a canonical
S1-action.
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We then define the negative cyclic complex of A as the (homotopy) fixed points

HC−(A) = HH(A)S
1

. (3)

There is a known Dennis trace K(A) → HH(A), which lifts to a cyclotomic trace
K(A) → HC−(A).

Rationally, it helps with understanding K-theory:

Proposition 1.2 ([Goo86]). Let A → A be a quotient with nilpotent kernel. Then the square

K(A)⊗S Q HC−(A⊗Z Q)

K(A)⊗S Q HC−(A⊗Z Q)

⌟ (4)

is (homotopy) cartesian.

However, without rationalisation, the result becomes false. Changing the base from
SpecZ to SpecS solves this issue.

Definition 1.3. The topological Hochschild homology of A is

THH(A) = A ⊗
A⊗

S
A
A ≃ S1 ⊗

S
A ≃ O

(
SpecA ×

SpecA×Spec SSpecA
SpecA

)
, (5)

and its topological negative cyclic homology is TC−(A) = THH(A)S
1 .

The Tate topological cyclic homology TCt(A) is a refinement of TC−(A) where the
fixed points are taken respectively to all the Frobenius of the cyclic subgroups of S1.

Theorem 1.4 ([DGM13, NS18]). Let A → A be a quotient with nilpotent kernel (or more
generally, a map of connective ring spectra such that π0A → π0A is surjective with nilpotent
kernel). Then the square

K(A) TCt(A)

K(A) TCt(A)

⌟ (6)

is (homotopy) cartesian.

2 Geometry for homotopy theory: moduli stacks and
cohomology theories

Consider the diagram

S2 K(Z, 2) ≃ BS1

CP1 CP∞

canon.

≃ ≃ (7)
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Definition 2.1. A multiplicative cohomology theory E• is complex-orientable if E2(BS1) →
E2(S2) is surjective.

A complex orientation for E is a lift cE1 ∈ Ẽ2(BS1) of 1 ∈ E0(∗) ≃ Ẽ0(S0) ≃ Ẽ2(S2) in
reduced E-cohomology.

Example 2.2. Any even (i.e. concentrated in even degrees) multiplicative cohomology
theory is complex-orientable.
Example 2.3. There is a universal complex-oriented spectrum, denoted MU and known
as complex cobordism: for any E∞-ring spectrum E, (homotopy classes of) homo-
morphisms MU → E are in bijection with complex orientations on E.

Lemma 2.4. For any complex orientation cE1 , there is a isomorphism E•(CP∞) ≃ E•(∗)[[cE1 ]].
Under this isomorphism, the natural group law on BS1 becomes a formal group law over

E•(∗).
In particular, a morphism MU → E induces a 1-dimensional formal group over π•E.

What about going in the other direction?

Theorem 2.5 ([Laz55, Mil60, Qui69]). Let L be Lazard’s universal ring, such that morphisms
L → R (for R a classical ring) are the same as 1-dimensional formal groups over R. There is an
isomorphism of graded rings π•(MU) ≃ L.

In other words, putting a formal group structure on π•E = E•(∗) is the same thing
as giving E•(∗) an MU•(∗)-algebra structure. We may then hope to recover E• by the
formula

E•(X) = MU•(X) ⊗
MU•(∗)

E•(∗). (8)

Theorem 2.6 ([Lan76]). For every prime p, there is a sequence of elements v(p)1 , · · · ∈ π•MU,
such that eq. (8) defines a cohomology theory if and only if (p, v(p)1 , · · · , v(p)n ) is regular in
π•E = E•(∗) for any p and any n.

This condition becomes much clearer under the light of algebraic geometry: SpecL
provides an affine atlas for the moduli stack M♡

fg of formal groups (as they are locally

given by formal group laws), and L → R is Landweber-exact if and only if SpecR → M♡
fg

is flat.
How do we now understand L ≃ π•MU in terms of spectral geometry? Note that

MU is even, so π•MU = π2•MU, and in turn

π2•MU ≃ π0

(∑
n∈Z

Σ2nMU

)
︸ ︷︷ ︸

=:MP

, (9)

where MP is then the 2-periodisation of MU, the universal 2-periodic complex-oriented
spectrum.

Theorem 2.7 ([Gre21]). The E∞-ring spectrum MP provides an affine chart for the (non-
connective) spectral moduli stack of oriented spectral formal groups (where an orientation on a
formal group G over R is ωG ≃ Σ−2R in ModR).
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3 What happens

Some things remain essentially the same as in usual (derived) algebraic geometry: we
can define a theory of étale morphisms of E∞-rings, and spectral schemes and DM
stacks, following the same general pattern.

In particular, we may define spectral schemes and Deligne–Mumford stacks in two
ways, as explained in the following table (which is meant to be read clockwise, starting
from the top left).

Geometric picture Functor of points
Spectral schemes (|X|,OX) hom(Spec(−), X)

Spectral DM stacks ((Aff/F)ét,O) F

That is, a “geometric”

spectral scheme given by a topological space |X| with a structure sheaf of E∞-rings can
be seen as its functor of points through the Yoneda embedding, and a more general
functor of points defining a spectral DM stack can be seen geometrically by passing to
its étale topos with its canonical structure sheaf.

However, certain phenomena will defy our algebraic intuition: in particular, polyno-
mial algebras are no longer free as ring spectra, so there are two reasonable definitions
of the affine line: A1

R = Spec(R{x}) where R{x} means the free E∞-algebra on one ele-
ment over R, and A1

R,♭ = Spec(R[x]). The first is differentially smooth but not flat over R,
while the second is flat but not differentially smooth — indeed, differential smoothness
is based on projectivity of the topological cotangent complex.

The difference between the two can be understood as a matter of strictness of the un-
derlying additive E∞-group: for any spectrum X, the ∞-groupoid Ω∞X, as an infinite
loop space, admits a structure of grouplike E∞-monoid (and in fact this restricts to an
equivalence between connective spectra and grouplike E∞-monoids in ∞-groupoids).
Thus, an E∞-ring spectrum also has an “underlying weak (i.e. E∞) abelian group”, but
for derived (aka animated) rings such as polynomial rings, this underlying weak group
is strictly commutative.

We illustrate this idea in a final example.

Definition 3.1 (Hopkins). Let X be a spectrum. The type of weak elements of X is

Ω∞X = homSp(S, X). (10)

The type of strict elements of X is homSp(Z, X).

Remark 3.2. We have

homSp(S, X) ≃ homSp(Σ
∞∗, X) ≃ hom∞Grpd(∗,Ω∞X) ≃ homE1Grp(Z,Ω

∞X) (11)

and (since Z is connective)

homSp(Z, X) ≃ hom
Spconnective(Z, τ≥0X) ≃ homE∞Grp(Z,Ω

∞X), (12)

where EnGrp denotes the ∞-category of grouplike En-monoids (in ∞-groupoids). We
can thus see weak elements as “E1-elements” and strict elements as “E∞-elements”.
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Definition 3.3 ([GN23]). The type of En-elements of X is homEnGrp(Z,Ω
∞X).

Theorem 3.4 ([GN23]). For any ring spectrum R, complex orientations on R are equivalent to
E2-strictifications (i.e. lifts from an E1- to an E2-element) of the weak element 1 ∈ π0R.
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