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We extend Barwick’s and Haugseng’s construction of the double∞-category
of spans in a pullback-complete∞-category C to more general shapes: for
a large class of algebraic patterns P, we define a P-monoidal ∞-category
of P-shaped spans in C, and we identify monads in it with Segal P-objects
in C. For the cell pattern Θop, this recovers a homotopical reformulation
of Batanin’s original definition of weak ω-categories, and in general can be
seen as a variant of the generalised multicategories of Burroni, Hermida,
Leinster and Cruttwell–Shulman.
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1 Introduction

1.1 Algebraic structures for higher categories

The various definitions of higher categories come in two families: algebraic definitions
specify the minimal amount of shape data (for ℓ-categories, an ℓ-graph, comprised only
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of elementary cells) and add the structure of all the composition operations and their
higher coherences, while geometric definitions start from a bigger shape containing all
the possible pasting diagrams of cells and simply impose conditions to ensure that they
come from decompositions into compatible elementary cells.

For example, the standard definition of an internal category, in a category C admit-
ting finite pullbacks, is as a ∆op-shaped object X• of C — where ∆ is the category of
1-dimensional pasting diagrams, that is sequences of composable arrows — satisfying
the Segal decomposition condition which expresses each value Xn on a pasting of n

consecutive arrows as X1 ×X0
· · · ×X0

X1. This can be reinterpreted in a more algebraic
way as giving a graph X•|{[0],[1]} in C and a certain kind of algebra structure on it, subject
to the simplicial identities. To make good sense of this algebra structure, it was noticed
by [Bén67] that a graph in C is nothing but an endomorphism in the bicategory (or bet-
ter, the double category) of spans in C, and the required algebra structure is none other
than a structure of monad on this endomorphism.

For strict higher categories, the situation generalises directly: on the one hand, [Joy97]
introduced a category Θ of ω-categorical pasting diagrams, so that strict ω-categories
in any category with fibre products C are exactly C-valued presheaves on Θ satisfying a
Segal condition. On the other hand, [Bat98] constructed an internal (strict) ω-category
in Cat (a globular object in Cat equipped with compositions) Span∞(C) of infinitely
iterated spans in C, so that globular monads in it are exactly strict ω-categories internal
to C.

The key insight of [Bat98] is then that, using the higher structure naturally present in
globular categories, one can refine the teminal globular operad to a suitable contract-
ible globular operad AG∞, which contains enough coherence data for AG∞-algebras in
Span∞(C) to be a good definition of weak ω-categories in C.

While the presence of higher cells in globular sets allows one to make sense of AG∞
as an algebraic resolution of the terminal globular operad, eschewing any homotop-
ical machinery, formulating things in a setting of homotopy theory allows many con-
structions to become simpler, and more widely applicable. Indeed, the logic of using
the higher cells to tame the infinite towers of coherences needed for a resolution only
works for full ω-categories, but breaks down if trying to define weak ℓ-categories for
some ℓ < ω. Nonetheless, [Hau21] showed that the situation for (weak) 1-categories
can be dealt with using∞-categories: category objects in an (∞, 1)-category C are iden-
tified with homotopy-coherent monads in the double (∞, 1)-category of spans in C.

In this note, we extend this result (as a direct application of theorem 5.7) to a charac-
terisation of ℓ-category objects as monads in ℓ-times iterated spans, which both extends
Batanin’s definition of weak ω-categories to one for weak ℓ-categories for any ℓ ≤ ω,
and also simplifies it by removing the need to resolve the terminal globular∞-operad
by a more complicated one.

1.2 Multicategories and algebraic patterns

In order to understand how to construct categories of generalised spans, let us switch
gears to another categorical structure that can be defined in a similar way: multicategor-
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ies, or coloured operads. It was noticed by [Bur71; Her04; Lei98] that multicategories
can be defined as monads in a double category of Kleisli M-spans, where M is the “free
monoid” monad on Set, fitting in a more general framework of T-multicategories, for a
cartesian monad T, as monads in a double category of Kleisli T-spans, whose morph-
isms are the spans twisted by T on their source, and whose composition uses T’s
monad structure. In particular, Batanin’s globular operads can also be obtained in this
way.

Unfortunately, this double category of Keisli T-spans is not characterised by a clear
universal property (see [CS10, Remark 4.2]), which makes constructing it in the ∞-
categorical world very difficult. Because of this, we will instead use a different kind of
structure to organise the generalised spans.

To explain the idea, let us keep focusing of the example of multicategories. An M-
span from a set Y0 to a set X0 is given by a span MY0 ← X1 → X0, which we interpret
as a multispan (as championed by [Baa19] for the study of hyperstructures) of some
arbitrary arity a+1, one of whose legs (the root) goes to X0 and the a others (the leaves)
to Y0. To compose it with an M-span MZ0 ← Y1 → Y0, one forms the M-span

MY1 ×
MY0

X1

MY1 X1

MZ0 M2Z0 MY0 X0
µ

(1)

expressing that one takes a copies of the multispan corresponding to MZ0 ← Y1 → Y0
and glues their distinguished roots to the various leaves of MY0 ← X1 → X0.

As is usual in operad theory, one also, instead of blowing up the situation globally,
glue a single new span to one leaf of MY0 ← X1 → X0; the composition operation
defined in this way, leaf by leaf, will no longer be a categorical composition, but indeed
an operadic one. Thus, multispans can be organised, instead of in a double category, in
a categorical operad (internal category in the category of operads).

While there are many different approaches to operadic structures in the 1-categorical
setting, in the ∞-categorical one a very convenient and powerful framework is that
of the algebraic patterns of [CH21], which extract the necessary data on a category of
shapes to speak of Segal decompositions (inert morphisms from elementary objects)
and keep additional algebraic operations (active morphisms): in other words, they give
a geometric presentation of ∞-operadic structure, while remembering what is the al-
gebraic part. In the approach that we will follow in this note, the choice of an algebraic
pattern will play the role of the choice of the cartesian monad T in the story sketched
above.

We will then construct in section 4, for any algebraic pattern P (satisfying a condi-
tion we call global saturation — that will be verified in all examples we know of, in
particular in section 3 for ω-categories) and any complete enough (∞, 1)-category C,
a Segal P-object in (∞, 1)-Cat of P-shaped spans in C, by adapting the construction
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of [Hau18a] with the ideas raised in [Str00] and expanded upon in [Web07, Example
4.8]. We will continue in section 5 by showing, as promised above, that monads in this
P-monoidal∞-category are the same thing as Segal P-objects in C.

1.3 Aknowledgements

This note was closely inspired by the ideas of [Hau18a; Hau21] and [Str00], and would
not exist without the insights developed in these works. Thanks are also due to Damien
Calaque for discussions about algebras in iterated spans, to Hugo Pourcelot for conver-
sations about differently-shaped spans, and to Reuben Stern for useful comments about
the interpretation of weak Segal Θ-fibrations.

The author was supported by the Göran Gustafsson Foundation for Research in Nat-
ural Sciences and Medicine.

2 Weak Segal fibrations over algebraic patterns

Definition 2.1 (Algebraic pattern). An algebraic pattern is a diagram of inclusions of
(∞, 1)-categories

P

Pel Pinrt Pact

(2)

where the wide sub-(∞, 1)-categories (Pinrt,Pact) form an orthogonal factorisation sys-
tem on P and Pel ⊂ Pinrt is a full sub-(∞, 1)-category.

The inert arrows (those in Pinrt) are denoted as↣ and the active ones (those in Pact)
are denoted as⇝, while the objects in Pel are known as elementary.

Notation 2.2. An (∞, 1)-category C is said to be P-complete if it admits limits of dia-
grams of shape Pel

P/
for any P ∈ P.

Definition 2.3 (Segal object). Let P be an algebraic pattern and C a P-complete (∞, 1)-
category. A Segal P-object in C is a functor X : P→ C such that X|Pinrt is the right Kan
extension of its restriction to Pel, which means that for any P ∈ P, the canonical arrow

X(P)→ lim
E∈Pel

P/

X(E) (3)

is an equivalence.

The full sub-(∞, 1)-category of
{
P,C
}

on the Segal objects is denoted SegP(C).

Example 2.4 (Product patterns). The (∞, 1)-category of algebraic patterns admits all lim-
its, which can be computed at the level of the underlying (∞, 1)-categories. In particu-
lar, it admits products, and these are compatible with currying, in that if P and Q are
two algebraic patterns and C is P×Q-complete, then SegQ(C) is P-complete and there
is an equivalence SegP×Q(C) ≃ SegP(SegQ(C)).
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Example 2.5 (P-graphs). As observed in [CH21, beginning of §8], any algebraic pat-
tern P restricts to a pattern structure on Pinrt, whose only active morphisms are the
equivalences, and further restricts to Pel. Evidently, the restriction–right Kan extension
adjunctions along Pinrt,el = Pel ↪→ Pinrt and Pel,el = Pel ↪→ Pel induce equivalences
SegPinrt(C) ≃

{
Pel,C

}
and SegPel(C) ≃

{
Pel,C

}
for any P-complete (∞, 1)-category

C. We will refer to (necessarily Segal) Pel-objects as P-graph, and to the restriction of a
Segal P-object to Pel as its underlying P-graph.

When C is (∞, 1)-Cat, Segal P-objects P → (∞, 1)-Cat can also be seen as categoy
objects in SegP(∞-Grpd), and as such will generally be written as X,Y , . . . , in the font
reserved for internal categories. Such an object X : P → (∞, 1)-Cat can be recast as a
cocartesian fibration X =

∫P
X → P satisfying the Segal condition for its fibres. We call

such fibrations Segal P-fibrations. A certain weakening of this notion turns out to be
extremely useful.

Definition 2.6 (Weak Segal fibration). Let P be an algebraic pattern. A weak Segal
P-fibration (also called P-operad) is an (∞, 1)-functor f : X→ P such that:

1. for every object X ∈ X, every inert arrow i : fX → P in P admits a f-cocartesian
lift i! : X→ i!X;

2. for every object P ∈ P, the (∞, 1)-functor XP → limE∈Pel
P/
XE induced by the

cocartesian morphisms over inert arrows is invertible;

3. for every X ∈ X and every choice of f-cocartesian lift of the tautological diagram
i : Pel

fX/
→ P (of inert morphisms from fX) to an i! : (P

el
fX/

)◁ → X taking the cone
point to X, for every Y ∈ X, the commutative square

X(Y, X) limE∈Pel
fX/

X(Y, i!(E))

P(fY,fX) limE∈Pel
fX/

P(fY, i(E) = E)

(4)

is cartesian.

A morphism of weak Segal P-fibrations from X→ P to Y → P is an∞-functor X→ Y

over P preserving cocartesian arrows over inert arrows of P.

Morphisms from X → P to Y → P are also called X-algebras in Y, and their (∞, 1)-
category is denoted AlgX(Y).

Lemma 2.7 ([CH21, Lemma 9.10]). The domain of any weak Segal fibration f : X→ P admits
a structure of algebraic pattern, where an arrow is active if it is over an active arrow of P, inert
if it is f-cocartesian and lies over an inert arrow, and an object is elementary if it lies over an
elementary of P. In particular, Segal morphisms between (sources of) weak Segal fibrations over
P are exactly their morphisms of weak Segal P-fibrations.
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If X → P and Y → P are Segal P-fibrations, with corresponding P-monoidal (∞, 1)-
categories X and Y , morphisms of weak Segal fibrations X → Y can be seen as the lax
morphisms X→ Y .

Definition 2.8 (Monads). Let f : X → P be a weak Segal P-fibration. A P-monad in X

is a morphism from the terminal (weak) Segal P-fibration P
id
−→ P to f.

Finally, we describe a condition on algebraic patterns which will be paramount for
the construction of the categories of spans.

Notation 2.9 (Co-internalisation of a category). For any (∞, 1)-category E, we will let
E−/ denote the ∞-functor Eop → (∞, 1)-Cat taking an object E ∈ E to the slice EE/

and an arrow f : E → E′ to the codependent coproduct Σf = (f ◦ −): EE′/ → EE/.
We refer to it as the co-internalisation of E, though it differs from the internalisation
of Eop considered in [Str00] in that the latter, defined for E admitting pushouts, has
functoriality along f given by the right-adjoint (co-base change) of Σf — though it is
related, after passing to presheaves, to the co-internalisation of

{
E,∞-Grpd

}
.

Definition 2.10 (Globally saturated pattern). An algebraic pattern P is globally satur-
ated if for any P ∈ P, the canonical map

colim
E∈Pel

P/

Pel
E/ → Pel

P/ (5)

is an equivalence.

Remark 2.11. In [CH21, Proposition 14.20], an algebraic pattern P is said to be saturated
if the inclusion Pel ↪→ Pinrt is codense. While it is possible for an algebraic pattern to be
globally saturated but not saturated (cf. section 6.3), despite our choice of terminology,
it is not whether clear saturation is a direct strengthening of global saturation.

Example 2.12. [Hau18a, Proposition 5.13] shows that the algebraic pattern ∆op♮ for in-
ternal categories (defined in section 6.2) is globally saturated.

3 Global saturation for the cell category Θ

Construction 3.1. Recall that the (non-reflexive) globe category G is generated by ob-
jects n, for all n ∈ N, and arrows i±n : n→ n+ 1, as presented in the graph

0 1 · · · n · · · ,
i+0

i−0

i+1

i−1

i+n−1

i−n−1

i+n

i−n

(6)

with the relations i+n+1i
ε
n = i−n+1i

ε
n for any n ∈ N and any ε ∈ {+,−}. A globular object

in an (∞, 1)-category C is a C-valued presheaf on G. A strict ω-category is a globular set
equipped with units and composition operations satisfying certain equations (spelled
out for example in [Str00, p. 300]); such structure is monadic over

{
Gop,Set

}
, with

monad Fω.
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The cell category Θ (first introduced in [Joy97]) has as objects the globular sets that
are pastings of appropriately composable globes — a condition encoded precisely as
the notion of globular sums in the sense of [Ara10, §2.1.1] or [Lou23, §1.1.2.2] — and
as morphisms the morphisms of strict ω-categories between their associated free ω-
categories. A morphism f is inert (also called an immersion) if it is the image by Fω

of a morphism of globular sets, and active if in any factorisation f = ia with i inert, i
must be an identity (by [Ara10, Proposition 3.3.11], they correspond to the maps also
known as algebraic, or covers). By [Ber02, Lemma 1.11] or [Ara10, Proposition 3.3.10],
the classes of active and inert morphisms form a unique factorisation system, so in
particular an orthogonal one, on Θ.

Notation 3.2 (Generic n-cells). For any n ∈ N, the representable presheaf よG(n) is ca-
nonically endowed with a structure of strict ω-category (which comes from viewing it
as the restriction to Gop of よΘ(n)). We denote this ω-category Dn; it is known as the
n-globe, or as the generic (or “walking”) n-cell.

Definition 3.3. The algebraic pattern Θop♮ is the category Θop, endowed with the inert–
active factorisation system described above, and with elementary objects the ℓ-globes
(so that Θop♮,el ≃ Gop).

It is an immediate consequence of the definition (and of the fact that all inert maps
into a globe in Θ also have to be from a globe) that Segal Θop♮-objects are exactly what
are called Θ-models in [Ber02].

Lemma 3.4 ([Ara10, Proposition 2.3.18]). The pattern Θop♮ is saturated.

Proof. This is essentially a consequence of the definition of globular sums: any such
globular set T can be written as an iterated pushout T ≃ Di1 ⨿Di′

1

· · · ⨿Di′
p−1

Dip , and

by [Ara10, Lemme 2.3.22], the immersions Di → T featuring in this pushout define a
cofinal subcategory of Θ♮,el

/T
.

It follows from this that the definition of Segal Θop♮-objects in a complete (∞, 1)-
category C coincides with that of (weak) ω-categories in C in the sense of [Lou23],
albeit without the Rezk-completeness (or univalent completeness) condition — so that,
to be more precise, they correspond to flagged ω-categories as in [AF18].

Construction 3.5. Since the cells in a pasting diagram are unlabelled, the standard rep-
resentation of objects of Θ contains redundant information. A more minimal present-
ation, suggested by [Bat98] and developed more thoroughly in [Ber02] and [Ara10], of
these objects is as level trees, functors from some [ℓ]op (ℓ being the categorical dimen-
sion) to ∆ whose value at the terminal object 0 is [0]: the cells in the corresponding
pasting diagram can be all recovered as the sectors in the tree.

This description makes it easier to get a handle on the structure of these trees and
their categories of inert morphisms: for a tree T : [ℓ]op → ∆, for k ≤ ℓ, we set |T |(k)
to be the reunion, over i ∈ T(k), of the T(k + 1)i + 1, where T(k + 1)i is the fibre of
T(k + 1) → T(k) at i (and where we decreed T(ℓ + 1) to be [−1] = ∅). Note that the
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assignment [ℓ]op ∋ k 7→ |T |(k) is not functorial; however G≤ℓ
op ∋ Dk 7→ |T |(k) can be

made functorial.

Remark 3.6. The objects of |T |(k) can be understood as the sectors at level k as defined
by [Ber02] (and, likewise, their ordering is the natural left-to-right ordering of sectors
in each fibre), so that |T | coincides with the globular set denoted T∗ in [Bat98].

In the dictionary between globular sums and trees, it is the sectors of a tree that
correspond to the cells of the corresponding globular sum.

We will now use the decompositions provided by the proof of lemma 3.4 to under-
stand the categories Θ♮,el

/T
.

Lemma 3.7. Let T ∈ Θ be any globular sum. Then Θ
♮,el
/T

is equivalent to the Grothendieck
construction of the globular set |T |.

Proof. We will simply exhibit an explicit isomorphim of categories. Consider an object
of Θ♮,el

/T
, given by a map Di ↣ T . Since Di is the free i-cell, this map is uniquely char-

acterised by a choice of an i-cell in T . In terms of the associated trees, Di is a linear tree
and so such a map is characterised by a choice of a branch at level i and a sector around
its top point. It follows from remark 3.6 that these are exactly counted by the elements
of |T |.

Example 3.8. For any elementary Dℓ, the category Θ
♮,el
/Dℓ

is freely generated by the graph

⌜Cℓ⌝

⌜C−
ℓ−1⌝ ⌜C+

ℓ−1⌝

⌜C−
1 ⌝ ⌜C+

1 ⌝

⌜C−
0 ⌝ ⌜C+

0 ⌝

...
... (7)

where we recall that Dℓ has a unique ℓ-cell Cℓ and, for any 0 ≤ i < ℓ, two i-cells C±
i

serving has source and target for the higher cells, and ⌜C±
i ⌝ : Di → Dℓ denotes the

(inert) map selecting the corresponding cell. In other words, Θ♮,el
/Dℓ

is the free-living ℓ-

iterated cospan, so that the category we are ultimately interested in, Θop♮,el
Dℓ/

, which is
its opposite, will the the free-living ℓ-iterated span.
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Lemma 3.9. Let T be a globular sum of the form Dm⨿Dℓ
Dn. Then Θ

♮,inrt
/T

is the strict pushout
of 1-categories

Proof. Let us call Eε
i the cells of T in Dm, Fεi those in Dn, and Cε

i those in Dℓ, so that we
have Eε

i = Cε
i = Fεi for i < ℓ and E+

ℓ = Cℓ = F−ℓ . The matter is then that of enumerating
the cells and their relations, for which no explanation can be as clear as simply drawing
a generating graph:

Em Fn

E−
m−1 E+

m−1 F−n−1 F+n−1

E−
ℓ+1 E+

ℓ+1 F−ℓ+1 F+ℓ+1

E−
ℓ Cℓ F+ℓ

C−
ℓ−1 C+

ℓ−1

C−
0 C+

0 .

...
...

...
...

...
...

(8)

As a strict pushout of 1-categories is computed by taking respective pushouts of the
sets of objects and of the sets of morphisms, one can indeed recognise in eq. (8) a strict
pushout of three versions of eq. (7).

Proposition 3.10. The algebraic pattern Θop♮ is globally saturated.

Proof. Again, we can use the decomposition T ≃ Di1 ⨿Di′
1

· · · ⨿Di′
p−1

Dip since it is

cofinal, so that all we have to prove is that

Θ
♮,el
/T

≃ Θ
♮,el
/Di1

⨿
Θ

♮,el
/D

i′
1

. . . ⨿
Θ

♮,el
/D

i′
p−1

Θ
♮,el
/Dip

. (9)
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To compute this pushout of (∞, 1)-categories, we will use the Joyal model structure
for quasicategories. Letting N•C denote the nerve of an (∞, 1)-category C, it is clear
— since i′j±1 < ij for all j in the decomposition — that the maps of quasicategories

N•Θ
♮,el
/Di′

j±1

→ N•Θ
♮,el
/Dij

are injective in every degree, i.e. cofibrations in the Joyal model

structure, so that the pushout will coincide with the pushout of 1-categories. The result
for this strict pushout is then established via lemma 3.9.

4 Generalised spans

For this section, we fix an algebraic pattern P and a P-complete (∞, 1)-category C. We
will adapt to P the constructions and arguments of [Hau18a, §5].

Recall that Ar(P) :=
{
2,P
} ev0−−→ {1,P} ≃ P is a cartesian fibration classifying the∞-functor P−/ : P

op → (∞, 1)-Cat. We let Arinrt(P) be the full sub-(∞, 1)-category of
Ar(P) on the inert arrows — which, by the dual of [BHS22, Proposition 2.2.2], still
defines a cartesian fibration.

Our first goal is to show that Arinrt(P)
ev0−−→ P classifies an∞-functor Pop → (∞, 1)-Cat

whose action on objects is P 7→ Pinrt
P/ .

Construction 4.1. Since the factorisation system of P is functorial, projection onto the
inert part of an arrow defines a functor inrt :

{
2,P
} → {3,P} → {2,P}, which pre-

serves the image of ev0 so defines a morphism of categories over
{
1,P
}

(but not of
cartesian fibrations over P, as it does not preserve cartesian lifts of non-inert morph-
isms). We let inrt(Ar(P)) denote its essential image, whose objects are then the inert
arrows of P while morphisms are the squares all of whose edges are inert — so that, in
particular, the fibre of ev0|inrt(Ar(P)) at P ∈ P is (Pinrt)P/ = Pinrt

P/ .

Lemma 4.2. Consider a commuting triangle of inert arrows below-left

Q

P

Q′

h

g

g′

O E Q

O E′ Q′

inrt(gf)

Σfg=gf

inrt(Σfh) h

inrt(g′f)

Σfg′=g′f

(10)

defining a morphism in Pinrt
P/ , and let O f

−→ P be any arrow of P, with inert–active factorisation
of Σfh as above-right. Then inrt(Σfh) is inert.

Proof. This is a direct application of the left-cancellability property for the left class of
an orthogonal factorisation system (see for example [Lur09, Proposition 5.2.8.6. (4)]
or [Lou23, Proposition 4.1.2.12]).

10



Corollary 4.3. The projection inrt(Ar(P)) → P is a cartesian fibration, and coincides with
Arinrt(P)→ P.

We thus obtain an∞-functor Pinrt
−/ : Pop → (∞, 1)-Cat (whose restriction to (Pinrt)

op

is the co-internalisation of Pinrt).

Definition 4.4. We denote p : SpanP(C) → P the cocartesian fibration classifying the∞-functor
{
Pinrt
−/ ,C

}
: P→ (∞, 1)-Cat.

Recall that by [Bar22, Proposition 2.37], for any P ∈ P there is an algebraic pattern
structure on the slice PP/, where an object (resp. an arrow) is elementary (resp. inert,
resp. active) if and only if its image by ev1 is so in P. Furthermore, by [Kos21, Pro-
position 2.14 and Proposition 2.4], it restricts to an algebraic pattern structure on Pinrt

P/

(which has no non-trivial active morphisms).

Definition 4.5. We call SpanP(C) the full sub-(∞, 1)-category of SpanP(C) on the ob-
jects (P,F : Pinrt

P/ → C) such that F is a Segal Pinrt
P/ -object.

Remark 4.6. An alternate construction of SpanP(C) is provided by [Kos21, Corollary
2.16].

We let iinrt
P : Pinrt

P/ → PP/ denote the canonical inclusion (induced under slicing by

Pinrt ↪→ P). By [Kos21, Proposition 2.15] (which is formulated in the case of P = ∆op♮

but only uses the factorisation system), for any arrow f : O → P in P, the induced ∞-
functor Σf,∗ :

{
PO/,C

} → {PP/,C
}

sends the the image of iinrt
O,! into the image of iinrt

P,! .
We can then let PreSpanP(C) → P denote the Grothendieck construction of the∞-

functor
{
P−/,C

}
: C → (∞, 1)-Cat, and SpanP(C) is the full sub-(∞, 1)-category of

PreSpanP(C) on those objects (P,F : PP/ → C) such that F is in the image of iinrt
P,! (so

that it is determined by its restriction Pinrt
P/ → C).

Lemma 4.7. The restricted projection p : SpanP(C) ↪→ SpanP(C)
p
−→ P is a cocartesian

fibration.

Proof. As explained in the proof of [Hau18a, Corollary 5.12], since SpanP(C) is a full
sub-(∞, 1)-category of SpanP(C), all we need to do is check that if (P,F) → (Q,G) is
a p-cocartesian morphism in SpanP(C) such that F is Segal, then G is Segal as well.
Note also that such a cocartesian morphism consists of an arrow f : Q → P in P with
G ≃ Σf,∗F = F ◦ (Σf): in other words, we must show that Segal objects are preserved
by composition with codependent coproduct. But this is an immediate consequence
of [Bar22, Corollaries 2.40 and 2.41].

Proposition 4.8. Suppose P is globally saturated. The fibration p : SpanP(C)→ P is a Segal
fibration, that is the∞-functor SpanP(C) : P→ (∞, 1)-Cat it classifies defines a P-monoidal
(∞, 1)-category.
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Proof. To make the definition explicit, we need to show that for any P ∈ P,

SegPinrt
P/
(C)→ lim

E∈Pel
P/

SegPinrt
E/
(C) (11)

is an equivalence. Since Pinrt
P/ only has inert morphisms, the right Kan extension ∞-

functor
SegPel

P/
(C) ≃

{
Pel
P/,C

} → SegPinrt
P/
(C) (12)

is an equivalence. Similarly, every factor SegPinrt
E/
(C) in eq. (11) is equivalent to

{
Pel
E/
,C
}

,
and so the map of eq. (11) takes the form{

Pel
P/,C

} → lim
E∈Pel

P/

{
Pel
E/,C

}
. (13)

Since P is assumed globally saturated, and enriched homs (or cotensors) send colimits
in the first variable to limit, this map is an equivalence.

5 Monads in P-spans

This section will follow very closely the structure of [Hau21, §3].

Lemma 5.1. The∞-functor Arinrt(P)
ev1−−→ P admits a right adjoint right inverse.

Proof. The functor ⌜1⌝ : 1 → 2 has a retraction 2
!2−→ 1, which upgrades in fact to a left

adjoint left inverse: we clearly have !2 ◦ ⌜1⌝ = !1 = id1, while there is a (unique, since 2

is posetal) natural transformation id2 ⇒ ⌜1⌝ ◦ !2 = const1, and it is easily checked (by
unicity of !) that these two transformations satisfy the triangle identities.

Now note that ev1 : Ar(P) =
{
2,P
} → {1,P} is exactly given by

{
⌜1⌝,P

}
, and so, as

powering with P is (∞, 2)-functorial (that is, as an∞-functor
{
(−),P

}
: (∞, 1)-Cat

op →
(∞, 1)-Cat, it is (∞, 1)-Cat-linear, and so upgrades to an (∞, 2)-functor), it has a right
adjoint right inverse given by

{
!2,P
}

. The latter ∞-functor can be described very ex-
plicitly: it maps an object P ∈ P to its identity arrow idP ∈ Ar(P).

In particular, it factors through Arinrt(P) — as identity arrows are inert — and since
this sub-(∞, 1)-category of Ar(P) is full, the astriction of

{
!2,P
}

to it furnishes the de-
sired right adjoint right inverse to Arinrt(P)

ev1−−→ P.

Given its description, we will denote ⌜id⌝ : P → Arinrt(P) the right adjoint right in-
verse to ev1. The unit will simply be known as η : idArinrt(P) ⇒ ⌜id⌝◦ev1; its component
at (P↣ Q) ∈ Arinrt(P) is the square

η(P↣Q) :

P Q

Q Q.

(14)
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Proposition 5.2. The∞-functor Arinrt(P)
ev1−−→ P exhibits P as the localisation of Arinrt(P)

at the set I of ev0-cartesian morphisms lying over inert arrows of P.

Proof. Let W be the set of morphisms in Arinrt(P) inverted by ev1; by [Lur09, Corollary
2.4.7.11 and Lemma 2.4.7.] (cf. also [BHS22, Proposition 2.2.2.(2)]), W consists exactly of
the ev0-cartesian morphisms, so that we do have I ⊂ W. If (f, g) : (P↣ Q)→ (P′↣ Q′)
is a morphism in Arinrt(P) lifting f : P → P′ in P, it is in W if and only if g : Q → Q′ is
an equivalence so that we have a commutative square

(P↣ Q) (P′↣ Q′)

(Q = Q) (Q′ = Q′)

(f,g)

≃

(15)

in which the two vertical morphisms are in I. Any ∞-functor from Arinrt(P) to some
(∞, 1)-category C inverting the morphisms in I will then send the square of eq. (15) to a
square whose veritcal arrows (in addition to the lower horizontal one) are equivalences,
whence its upper horizontal is one as well since equivalences always satisfy the 2-of-3
property. This means that such an∞-functor automatically inverts all the morphisms
in W, and we only need to show that ev1 is a localisation, along W. This follows readily
from the fact that it has a right adjoint right inverse (in fact it is equivalent to it), but in
our specific situation it can be seen in a more explicit way.

Let C be again any (∞, 1)-category and let us consider the comparison ∞-functor{
ev1,C

}
:
{
P,C
} → {

Arinrt(P),C
}
(W)

, where the target denotes the full sub-(∞, 1)-
category of

{
Arinrt(P),C

}
on the ∞-functors inverting the morphisms in W (through

which
{

ev1,C
}

does factor by definition of W). The crux of the matter is that the com-
ponents of the unit transformation η all belong to I — as can be seen in eq. (14) — and so
a fortiori to W. Hence, the adjunction

{
ev1,C

}
⊣
{
⌜id⌝,C

}
restricts on

{
Arinrt(P),C

}
(W)

to an equivalence (as its counit was already an identity, and its unit becomes one after
this restriction), which means that ev1 is a localisation along W.

Construction 5.3. Let f : X→ P be an∞-functor such that X admits f-cocartesian lifts
of inert morphisms. Consider the solid pullback

Arinrt(P) X×
P
Arinrt(P)

Arinrt(P) X×
P
Arinrt(P)

P X

ev0

f∗ ev0

ev∗
0 f

⌜id⌝◦ev1

id

η

ev0

ev0 η

ev∗
0 f

f∗ ev0

⌞
f∗ id=id

η!

f

(16)
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which is a (strongly) commutative diagram in the (∞, 2)-category (∞, 1)-Cat. Adding
⌜id⌝ ◦ ev1, represented as a dashed arrow, the induced back-left triangle does not com-
mute; however, adding as well the unit cell η and its whiskering ev0 η : ev0 = ev0 ◦ idArinrt(P) ⇒
ev0 ◦⌜id⌝ ◦ ev1 we obtain a “2-commutative” pasting diagram.

Now as f admits cocartesian lifts of inert arrows so does its base-change ev∗
0 f (since

cocartesian lifts are stable by pullback, by the co-dual of [RV22, Proposition 5.2.4]), and
so, using the formulation of cocartesian lifts from [RV22, Definition 5.4.2], the trans-
formation η(ev0 f

∗), whose components are inert, admits an ev0 f
∗-cocartesian dotted

lift idX×PArinrt(P)
η!=⇒ (idX×PArinrt(P))η =: fη(⌜id⌝ ◦ ev1).

We can finally define

f∗ ev1 := (f∗ ev0) ◦ fη(⌜id⌝ ◦ ev1). (17)

Explicitly, f∗ ev1 sends an object (X, ȷ : fX ↣ Q) ∈ X ×P Arinrt(P) to (XQ, Q = Q)

where X
ȷ!−→ XQ is a cocartesian lift of ȷ. By construction it comes equipped with a

natural transformation that we will call f∗α := (f∗ ev0)η! : f
∗ ev0 ⇒ f∗ ev1, sitting in

the diagram

P X×P P ≃ X

Arinrt(P) X×
P
Arinrt(P)

P X

f∗ idP=idX

ev1

ev0

α

f∗ ev0
f∗α

⌞

f∗ ev1

f

(18)

whose front and back squares are cartesian, but whose top square is not — and where
the natural transformation α comes from cotensoring with P the canonical 2-cell ⌜0 <

1⌝ : ⌜0⌝⇒ ⌜1⌝ : 1→ 2 (in particular, it is easily checked that the adjunction !2 ⊣ ⌜1⌝ lives
under 1 so that ev1 ⊣ ⌜id⌝ lives over P). Conjecturally, the right face of eq. (18) could be
seen in terms of the (∞, 3)-topos of (∞, 2)-categories as the strong base change, along f

admitting enough cocartesian lifts, between fibrational lax slice (∞, 2)-categories, jus-
tifying our notation, though since the conditions for its construction are rather specific
we will not pursue this point of view in further generality.

Lemma 5.4. The∞-functor f∗ ev1 admits a right adjoint right inverse.

Proof. Note that in addition to being a right adjoint right inverse to ev1, the map ⌜id⌝
is also a left adjoint right inverse to ev0. We will denote the counit of this adjunction
κ. Since the identity unit exhibits ev0 ◦⌜id⌝ = idP, the∞-functor ⌜id⌝ lifts strongly to
f∗⌜id⌝ : X → X ×P Arinrt(P): the equivalent of eq. (18) with ev1 replaced by ⌜id⌝ (and
α replaced by the identity unit, mutatis mutandis) is a strongly commutative diagram,
and fully cartesian. We claim that f∗⌜id⌝ is the sought-after right adjoint right inverse
to f∗ ev1.
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To see this, we will show that the transformation η! constructed in eq. (16) works as a
unit with identity counit; it requires first identifying its target fη(⌜id⌝◦ev1) as f∗⌜id⌝◦
f∗ ev1. This is in fact trivial, because the transformations η! : id ⇒ fη(⌜id⌝ ◦ ev1)
and (f∗⌜id⌝)(f∗ ev0)η! : id ⇒ f∗⌜id⌝ ◦ f∗ ev1 are both f-cocartesian lifts of η : id ⇒
⌜id⌝ ◦ ev1, but there is another interesting way of seeing it, that we detail in the next
paragraph.

Since the unit of the adjunction ⌜id⌝ ⊣ ev0 is an equivalence, the triangle identit-
ies imply that the whiskering κ⌜id⌝ is the identity transformation of ⌜id⌝ , and also
κ⌜id⌝ ev1 ≃ id⌜id⌝ ev1

. There are now two things we can do: since idfη(⌜id⌝ ev1) is a
cocartesian lift of id⌜id⌝ ev1

, the transformation idfη(⌜id⌝ ev1) factors through a unique lift
fη(κ⌜id⌝ ev1) of κ⌜id⌝ ev1, which because of the factorisation has to be an identity. At
the same time, one can take a cocartesian lift of κ⌜id⌝ ev1, which is easily seen to coin-
cide with fη(κ⌜id⌝ ev1); as a cocartesian lift of an identity, it is, again, an identity. We
thus have an equivalence

(f∗⌜id⌝)◦(f∗ ev1) = (f∗⌜id⌝)◦(f∗ ev0)◦fη(⌜id⌝◦ev1)
fη(κ⌜id⌝ ev1)
−−−−−−−−→

≃
fη(⌜id⌝◦ev1), (19)

expressing the decomposition we needed.
Furthermore, constructing the equivalent of eq. (16) but with ev1 ◦⌜id⌝ in place of idP

(so with structure map to P given by idP instead of ev0), and with the identity counit
ε : ev1 ◦⌜id⌝

=
=⇒ idP instead of η, we obtain, after strongly pulling back ev1 ◦⌜id⌝, an

f-cocartesian transformation ε! : f
∗(ev1 ◦⌜id⌝) ⇒ (f∗(ev1 ◦⌜id⌝))ε = idX, which as a

cocartesian lift of ε which is an identity, is itself an equivalence.
Finally, the fact that f∗η := η! and ε! satisfy the triangle identities is a consequence

of the triangle identities for η and ε, to which is applied the same reasoning we used to
obtain eq. (19).

It is worthwhile to note that the component of f∗η : id⇒ f∗⌜id⌝◦f∗ ev1 at an object

(X,fX
ȷ
↣ Q) ∈ X×P Arinrt(P) is

f∗η(X,fX↣Q) :

X,

fX

Q


(X,ȷ)

(X,idQ)

X,

Q

Q

 . (20)

Proposition 5.5. Let f : X → P be an ∞-functor such that X admits f-cocartesian lifts of
inert morphisms. The∞-functor f∗ ev1 : X×P Arinrt(P)→ X exhibits X as the localisation of
X×P Arinrt(P) at the set IX of morphisms (X; (f(X)↣ Q))→ (X′; (F(X′)↣ Q′)) such that

• X→ X′ is f-cocartesian and

• (f(X)↣ Q)→ (F(X′)↣ Q′) is ev0-cartesian and ev0-over an inert arrow.
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Proof. The proof follows the lines of that of proposition 5.2. Let WX be the class of
morphisms inverted by f∗ ev1. A morphism of X×P Arinrt(P), of the form (ξ, θ) where
ξ : X→ Y in X and θ sits is a commutative square

fX fX′

Q Q′

ȷ

fξ

ȷ′

θ

(21)

in P, is in WX if and only if θ is an equivalence Q ≃ Q′, so that it induces a commutative
square

(X,fX↣ Q) (X′,fX′↣ Q′)

(XQ,f(XQ) = Q) (X′
Q′ ,f(X′

Q′ = Q′))

(ξ,θ)

ȷ! ȷ′!

(ȷ!ξ,θ)

(22)

where X
ȷ!−→ XQ and X′ ȷ′!−→ X′

Q′ are cocartesian lifts of ȷ and ȷ′, and ȷ!ξ is the arrow XQ →
X′
Q′ uniquely induced by cartesianity, which is invertible since it lifts the isomorphism

Q ≃ Q′. The vertical morphisms are in IX by construction, so it follows from the 2-
of-3 property of equivalences that any∞-functor that inverts the morphisms in IX will
invert the morphisms in WX, and that the localisations along IX and WX coincide.

But again, it can be seen in eq. (20) that the components of f∗η are in IX whence in
WX, so f∗ ev1 is indeed a localisation along WX.

Corollary 5.6. Let f : X → P be an∞-functor such that X admits f-cocartesian lifts of inert
morphisms. There is a fully faithful∞-functor

{
X,C
}
↪→ {X,SpanP(C)

}
/P

whose essential
image is spanned by the∞-functors preserving cocartesian morphisms over inert morphisms of
P.

Proof. Direct application of [GHN17, Proposition 7.3] shows that for any (∞, 1)-category
X over P there is an equivalence{

X,SpanP(C)
}
/P

≃
{
X×P Arinrt(P),C

}
, (23)

in which an ∞-functor S : X → SpanP(C) over P (so mapping X to S(X) : Pinrt
fX/ → C)

corresponds to S̃ : X×P Arinrt(P)→ C mapping

(X,fX↣ Q) 7→ S(X)(fX↣ Q). (24)

In addition, by the description of p-cocartesian morphisms in SpanP(C) provided by [Lur09,
Corollary 3.2.2.13], one sees that an∞-functor S : X→ SpanP(C) takes an arrow ξ : X→
X′ to a cocartesian arrow in SpanP(C) if and only if the corresponding S̃ takes all
morphisms (ξ, θ) where θ is ev0-cartesian in Arinrt(P) to equivalences in C.
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By proposition 5.5,
{
X,C
}

identifies as the full sub-(∞, 1)-category of
{
X×P Arinrt(P),C

}
on those ∞-functors inverting all morphisms in IX. More precisely, the equivalence
of eq. (23) sits in the sequence{

X,C
}
≃
{
X×P Arinrt(P),C

}
(IX)

↪→ {X×P Arinrt(P),C
}
≃
{
X,SpanP(C)

}
/P

. (25)

One then only needs to observe that an ∞-functor S̃ ∈
{
X×P Arinrt(P),C

}
, corres-

ponding to S ∈
{
X,SpanP(C)

}
/P

, is in
{
X×P Arinrt(P),C

}
(IX)

if and only if for any
ξ : X → X′ in X that is f-cocartesian and any θ as in eq. (21) that is ev0-cartesian and
ev0-over an inert arrow, S̃(ξ, θ) is an equivalence, which is exactly the description given
above ofS taking f-cocartesian morphisms f-over (since ev0(θ) = f(ξ)) an inert arrow
to p-cocartesian arrows.

We can now arrive at our main result.

Theorem 5.7. Let X→ P be a weak Segal fibration and C a P-complete (∞, 1)-category. There
is an equivalence of (∞, 1)-categories

SegX(C) ≃ AlgX(Span(C)). (26)

Proof. Let S : X→ SpanP(C) be an∞-functor over P that preserves cocartesian morph-
isms over inert arrows (so corresponds to S̃ : X → C). It factors through SpanP(C) if
and only if for every X ∈ X, the Pinrt

fX/-object S(X) in C is Segal.
By [Bar22, Lemma 2.39], for any map of algebraic patterns O → P and any P ∈ P,

the projection O×P PP/ → P is an iso-Segal morphism. Applying this to O = Pinrt and
P = fX (for any X), we find that the above condition is equivalent to S̃ being a Segal
X-object.

6 Some examples: flavours of generalised multicategories

Remark 6.1 (Graphs and endomorphisms). Since the Segal condition for a pattern Pel

with only elementary objects and inert morphisms is trivial, the underlying P-graph of
the P-monoidal (∞, 1)-category SpanP(C) is SpanPel(C), which is directly given by the∞-functor

{
Pel
−/
,C
}

. Since Pel
E/

, for any elementary E, generally has a simple form, this
will make the underlying P-graph of P-spans easy to describe.

Furthermore, since the “algebraic operations” in Segal P-objects come from active
morphisms, a Pel-monad carries no algebraic structure and can simply be seen as a P-
endomorphism. The statement of theorem 5.7 thus restricts to saying that P-endomorphisms
in SpanP(C) are exactly P-graphs in C.

6.2 Categories and multiple categories

Take P to be the pattern ∆op♮, consisting of the simplicial indexing category ∆op with
its usual inert-active factorisation system (where a map [n] → [m] in ∆ is inert if it

17



is a subinterval inclusion and active if it is endpoints-preserving), and [0] and [1] as
elementary objects. Its Segal objects are internal categories.

Remark 6.2.1. Direct comparison shows that for any [n] ∈ ∆op, the category (∆op♮)inrt
[n]/

is equivalent (in fact isomorphic) to the twisted arrow category of n+ 1 = [n], as has
been previously noticed in [Hau18a, Remark 5.4] and implicitly used in [Kos21, Remark
2.18]: more precisely, a morphism in Tw(n+ 1) represented by a factorising square in
n+ 1 below-left

i i′

j j′

i≤j i′≤j′

i′≤i

j≤j′

[n] [n]

[j− i] ≃ {i, . . . , j} [j′ − i′] ≃ {i′, . . . , j′}

(27)

corresponds to the morphism in (∆op♮)inrt
[n]/ represented as the commutative square (in

∆) above-right.

Thus for any (∞, 1)-category C admitting finite fibre products, Span
∆op♮(C) is the

double (∞, 1)-category of spans in C constructed in [Bar13] and [Hau18a] (and denoted
SPAN+

1 (C) there).
Now, we also note that weak Segal ∆op♮-fibrations are virtual double ∞-categories

(also referred to as generalised non-symmetric ∞-operads in [GH15]) so that morph-
isms of weak Segal ∆op♮-fibrations correspond to “lax double functors”, and in par-
ticular ∆op♮-monads recover the usual notion of monad in a virtual double (∞, 1)-
category. In conclusion, theorem 5.7 applied to the pattern ∆op♮ recovers the main
theorem of [Hau21], that monads (or algebras) in spans are internal categories.

Example 6.2.2. More generally, using products of algebraic patterns (cf. example 2.4),
one sees that for any d ∈ N, the Segal ∆op♮,d-(∞, 1)-category Span

∆op♮,d(C) is the (d+1)-
uple (∞, 1)-category SPAN+

d (C) of iterated spans also constructed in [Hau18a].
We now explain how lax Segal ∆op♮,d-fibrations should be seen as virtual (d+1)-uple∞-categories. When viewing (strong) Segal ∆op♮,d-fibrations as (d+ 1)-uple categories,

one should separate the d directions coming from ∆d, which we dub the algebraic
directions, from the last one coming from straightening the cocartesian fibration, which
we will know as the categorical, or transversal, direction. A lax Segal ∆op♮,d-fibration
X is then virtual in all the algebraic directions: it has, for all n ≤ d, algebraic n-cells
in the usual directions for d-uple categories, and it has transversal cells from any n-
dimensional grid of n-cells to a single n-cell. We stress that, for the domains of the
transversal n-cells, we only require grids rather than the more general n-uple pasting
diagrams of [Rui22], as the grids are the objects of ∆d.

Let us represent the low dimensions; for ease of viewing we shall draw the trans-
versal direction vertically, from top to bottom (since drawing it transversally would
hide the face with the most information in the back).

For d = 1, the description — of virtual double∞-categories — is well-known: there
are objects and algebraic arrows, and in addition there are transversal arrows between
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objects and transversal cells from any pasting diagram (i.e. composable sequence) of
algebraic arrows to one algebraic arrow, drawn as 2-cells in

· · · ·

· ·.

(28)

For d = 2, we similarly have objects, two kinds of algebraic 1-arrows, and algebraic
squares or 2-arrows, and in addition transversal 1-arrows between objects, two kinds of
transversal 2-cells, corresponding to the two directions of algebraic arrows, and finally
transversal cubes or 3-cells for any grid of composable squares, as represented in

· · · · ·

· · · · ·

· · · · · ·

· ·

(29)

where the 3-cell is not visible but fills the cube.
A ∆op♮,d-monad then consists of monads (whose structure cells are transversal) in all

possible algebraic directions and throughout the different dimensions, resembling (a
less lax version of) the intermonads of [GP17, §7.1].

Example 6.2.3. If one takes instead the pattern ∆op♭, which has the same underlying cat-
egory and factorisation system but only [1] as elementary object — whose Segal objects
are internal categories X• with trivial object X0 of objects, so internal associative mon-
oids — then the monoidal (∞, 1)-category Span

∆op♭(C), for C admitting finite products
(for this is what ∆op♭-completeness means) is C itself seen with its cartesian monoidal
structure.

Generalising to ∆op♭,n (whose Segal objects are n-iterated associative monoids, so
En-monoids), we have that Span

∆op♭,n(C) is C seen with its cartesian structure as an
En-monoidal structure. In this case, theorem 5.7 simply recovers the fact that Segal
∆op♭,n-objects in a cartesian (∞, 1)-category C are n-uply commutative (meaning En-)
algebras in the cartesian monoidal (∞, 1)-category C× (i.e. En-monoids in C).

6.3 Commutative monoids

Take P to be the pattern Γop♭ where Γop ≃ F in∗ is the opposite of Segal’s category, which
is equivalent to the category of pointed finite sets, with its usual inert-active factorisa-
tion system, and ⟨1⟩ as the only elementary object. Its Segal objects are commutative
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(or E∞) monoids. As explained in [CH21, Example 14.22], this algebraic pattern is not
saturated; however it is globally saturated, as is easily seen from the fact that Γop♭,el

⟨n⟩/ is
a set of n elements.

It also follows that for any Γop♭-complete (i.e. admitting finite products) (∞, 1)-
category C, Span

Γop♭(C) is again C itself equipped with its cartesian symmetric mon-
oidal structure. Since weak Segal Γop♭-fibrations are∞-operads in the sense of [Lur17]
and Γop♭-monads are commutative algebras, we recover that Segal Γop♭-objects in C are
commutative monoids in C (where it is again understood that the term “monoid” refers
to an algebra in a cartesian monoidal∞-category).

Remark 6.3.1. For the product pattern P = Γop♭ × ∆op♮, whose Segal objects are internal
symmetric monoidal categories, we recover as SpanP(C) the double (∞, 1)-category of
spans in C, endowed with its symmetric monoidal structure coming from the cartesian
product in C.

Example 6.3.2. As a further variant, one may consider the algebraic pattern Γop♮, which
is like Γop♭ but also has ⟨0⟩ as an additional elementary object. Its Segal objects in a
Γop♮-complete (∞, 1)-category C are commutative monoids in a slice of C, which it is
convenient to interpret as families of commutative monoids in C indexed by an object
of C. In the same spirit, weak Segal Γop♮-fibrations are generalised∞-operads, which
are the same thing as families of∞-operads.

For any object ⟨n⟩, the category Γop♮,el
⟨n⟩/ is

ρ1 ρ2 · · · ρn−1 ρn

(
⟨n⟩ !

−→ ⟨0⟩
) (30)

where ρi : ⟨n⟩ → ⟨1⟩ sends i to 1 and all the other elements of ⟨n⟩ to 0, from which it is
seen that the pattern Γop♮ is globally saturated. More generally, any inert map ⟨n⟩→ ⟨k⟩
(with necessarily k ≤ n) determines and is uniquely determined by a k-element subset
of n = ⟨n⟩ \ {0}, so that writing ℘(n) for the powerset of n (equipped with its natural
order), we have Γop♮,el

⟨n⟩/ ≃ ℘(n)op. For example, for n = 3 the poset Γop♮,el
⟨3⟩/ is

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

{0}

(31)
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(containing copies of Γop♮,el
⟨2⟩/, Γop♮,el

⟨1⟩/, and Γop♮,el
⟨0⟩/ on the left). We can thus see that

Span
Γop♮(C) is the family of slices of C, each equipped with its monoidal structure

given by the pullbacks in C, and theorem 5.7 recovers the description of Segal Γop♮-
objects given above.

6.4 Higher categories and iterated spans

We now take P to be the pattern Θop♮ of definition 3.3. More generally, for any ℓ ∈
N ∪ {ω}, we let

Θℓ = Θ ∩ (∞, ℓ)-Cat (32)

be the ℓ-dimensional cell category used in [Rez10]; the pattern structure of definition 3.3
restricts to one on Θℓ (and we obviously have Θω = Θ).

It follows from the description given in eq. (7) that Span
Θ

op
ℓ

♮(C) is a cellular (∞, 1)-

category of ℓ-times iterated spans: for any k ≤ ℓ, the (∞, 1)-category of k-cells has as
objects the spans between the apices of two (k − 1)-iterated spans, and as morphisms
the morphisms between spans. In other words, it is a categorical enhancement of the
(∞, ℓ+1)-category Span+ℓ (C) of ℓ-iterated spans from [Hau18a, Definition 5.16, Remark
5.17], obtained by discarding all the extraneous “algebraic” directions of the (ℓ+1)-uple
one as in [ibid.] but still retaining the transversal one.

Remark 6.4.1. At the level of the underlying Θop♮-graph, the fact that our construction
of the globular category of iterated spans through slices of Θop♮,el = Gop recovers the
combinatorial one given in [Bat98, Definition 3.2] was already observed in [Str00].

Example 6.4.2. For any k ≤ ℓ, we can also define the pattern (Θℓ
op)Σ

k♮ to consist of the
same structure as Θop♮ but only the globes Dn with n ≥ k as elementaries. For example,

if ℓ is finite, taking k = ℓ recovers the pattern denoted Θ
op
ℓ

♭
in [CH21]. Segal objects for

(Θℓ
op)Σ

k♮ are Ek-monoidal internal (ℓ− k)-categories.

As noted in [CH21, Example 9.8. (iv)], weak Segal Θℓ
op♮-fibrations are an∞-categorical

version of the ℓ-globular multicategories or many-sorted ℓ-globular operads of [Lei04,
p. 273] and [CS10, Example 4.11], themselves a many-sorted, or coloured, version of the
ℓ-globular operads of [Bat98]. They are similar to the weak Segal ∆op♮,ℓ-fibrations de-
scribed in example 6.2.2, but where the domain of a transversal n-cell is an n-categorical
pasting diagram instead of an n-dimensional grid (and its codomain is a single n-globe
rather than an n-cube).

Warning 6.4.3. Despite their name of “ℓ-operads” in [Bat98], weak Segal ∆op♮,ℓ-fibrations
should not be thought of as a kind of (∞, ℓ)-operads, meaning∞-operads enriched in
(∞, ℓ− 1)-Cat. Indeed, as seen from the description above, they contain more data and
structure than (∞, ℓ)-operads.

Likewise, the strong Segal Θℓ
op♮-fibrations, known as “monoidal ℓ-globular categor-

ies” in [ibid.], are really categorical (∞, ℓ)-categories. In particular, Θℓ
op♮-monads are

very different from any kind of usual ℓ-categorical monads that could be made sense
(for example following the philosophy of [Hau18b] identifying Segal Θℓ+1

op♮-objects
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with reduced categorical Θℓ
op♮-objects) of in categorical (∞, ℓ)-categories: the monad

structure associates to any configuration of (algebraic) n-cells a transversal cell, so is
really independent of the (∞, ℓ)-categorical structure.

We then obtain by applying theorem 5.7 that Θℓ
op♮-monads in the categorical (∞, ℓ)-

category Span
Θℓ

op♮(C) are Segal Θℓ
op♮-objects, so internal (∞, ℓ)-categories, in C. For

ℓ = ω, this recovers a homotopical formulation of the definition of weak ω-categories
given by [Bat98] as well as that of [Lei04] (cf. [CL04] for an explanation of the different
definitions of ω-categories).

6.5 Multicategories and multispans

We finish by considering the algebraic pattern Ωop♮ (resp. Ωop♮
pl.) whose Segal ob-

jects are internal coloured operads (resp. internal coloured planar operads). Here, Ω
is the dendroidal category, whose objects are rooted trees (resp. with planar struc-
ture), henceforth referred to as dendrices to avoid confusion with the objects of Θ, and
whose morphisms express the grafting of dendrices — in contrast with the morphisms
of Θ which express the pasting of trees. The algebraic pattern structure is given by
having the inert morphisms be the sub-dendrex inclusions, the active morphisms the
boundary-preserving maps, and the elementary objects be the corollas ⋆a (determined
by their arities a ∈ N) and the nodeless edge η. As noted in [CH21], the pattern Ωop♮

because any dendrex can be decomposed as a gluing of corollas along edges, and the
same argument shows that it is also globally saturated.

To understand the dendroidal (∞, 1)-category Span
Ωop♮(C), let us first describe its

underlying categorical Ωop♮-graph Span
Ωop♮,el(C). At the level of colours, we just have

Ω
♮,el
/η

= {idη}. At the level of operations, writing e1, . . . , ea the leaves of the corolla ⋆a

and r its root, we find that Ω♮,el
/⋆a

is the category

(η
⌜e1⌝−−−→ ⋆a) · · · (η

⌜ea⌝−−−→ ⋆a)

id⋆a

(η
⌜r⌝
−−→ ⋆a)

(33)

of (a+ 1)-ary multicospans.
The structure of category objects in multicategories (coloured non-symmetric op-

erads) was studied in [CGR14, Definition 3.9]. In our case, we get for Span
Ωop♮(C)

an operadic composition of multispans by fibre products along the relevant legs, where
each multispan has a distinguished root as seen in eq. (33).

Example 6.5.1. It is also possible to replace Ωop♮ by the pattern Ξop♮ of [HRY19], whose
Segal objects are cyclic operads. We obtain for SpanΞop♮(C) the same structure as above,

22



except that the (a+ 1)-ary spans come without a choice of root. Note also that in Ξ, the
nodeless edge η is equipped with an involution, which for Segal objects becomes a
“duality” operation on colours. In our case, it acts as the identity.

Going further, we may also use the pattern Υ op♮ of [HRY20] (denoted U there), whose
Segal objects are modular operads. The categorical modular ∞-operadSpan

Υ op♮(C)
works much as SpanΞop♮(C), but with additional contraction operations that turn the
abstract self-duality of objects into an actual self-duality (in the usual monoidal, or
rather properadic, sense).

The weak Segal Ωop♮-fibrations were identified in [Ber22] as the “tree-hyperoperads”,
which are cumbersome to describe in detail (cf. [GK98, §4.1] or [MSS02, Definition
5.45] for the modular generalisation, simply called hyperoperads). Nevertheless, we
still obtain from theorem 5.7 that dendroidal monads in the categorical ∞-operad of
multispans in C are internal operads in C.

Remark 6.5.2. The definition of operads, and more general multicategorical structures,
as monads in multispans is well-known: it dates to [Bur71], and was independently
rediscovered by both [Her04] and [Lei98], and then further systematised by [Lei04]
and [CS10]. From a cartesian monad T on a category C, one constructs a double cat-
egory of Kleisli T-spans, whose objects are those of C and morphisms from C to D are
spans from TC to D, composition of spans using the monad structure.

For example, taking T to be the monad F
Γop♭ for free monoids, a Kleisli T-span is a

multispan of arbitrary arity, and monads (in the double-categorical sense) are coloured
operads. Generally speaking, if T is the monad FP for free Segal P-objects on P-graphs
for some appropriate algebraic pattern P, we expect that monads in Kleisli FP-spans
should be weak Segal P-fibrations, obtained as the Segal objects for a plus construction
P+ of P (as in [Ker23, Proposition 3.2.10]), so as P+-monads in P+-spans.

However, Kleisli F
Γop♭-spans and Ωop♮-spans, while both admitting a natural inter-

pretation as multispans, form markedly different structures. On the one hand, Span
Ωop♮(C)

is a categorical∞-operad, whose operadic composition is given (leg by leg) by simple
pullbacks. On the other hand, Keisli F

Γop♭-spans only form a double category, but its
composition is more complex and makes full use of the monad structure on F

Γop♭ . For
a general algebraic pattern P, the difference will be similar: we think of it as moving
the structure from the microcosm (on the Keisli FP-spans side) to the macrocosm (on
the P+-spans side).

It is nonetheless unclear what the precise relation between the two constructions is,
if there even is one: the Keisli-type construction can be abstracted away from a span
setting by using general monads acting on virtual double categories, but it is unlikely
to be able to handle non-directed structures such as the cyclic and modular∞-operads
of example 6.5.1.
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7 Conclusion: A fibrational perspective

Notation 7.1. In this section, we will identify (∞, 1)-categories with internal categor-
ies in∞-Grpd, where internal categories are by definition Segal ∆op♮-objects satisfying
Rezk’s univalence-completeness condition. It will also be convenient to see Segal P-
objects in (∞, 1)-Cat — such as, in particular, the P-(∞, 1)-categories of P-spans — as
internal categories in SegP(∞-Grpd).

Recall that, for any regular cardinal κ, the (∞, 1)-category ∞-Grpd
(κ) ⊂ ∞-Grpd is

the base of the universal discrete cocartesian fibration with κ-small fibres∞-Grpd
(κ)
• →∞-Grpd

(κ) in the (∞, 2)-topos (∞, 1)-Cat, just as Set(κ) ⊂ Set is the universal κ-small
discrete cocartesian fibration in the (2, 2)-topos Cat. In [Web07, Examples 4.7 and 4.8],
it is explained that, for an algebraic pattern Pel in which all objects are elementary and
all morphisms inert, the construction SpanPel(−) preserves classifying discrete fibra-
tions, so that the 2-topos Cat

({
Pel,Set

})
has a sufficient family of classifying discrete

cocartesian fibrations given by SpanPel(Set
(κ)
• ) → SpanPel(Set(κ)) (where “sufficient”

means that every discrete cocartesian fibration is classified by one in the family).
In the ∞-categorical setting, the properties of universal (or “classifying”) fibrations

are captured by the notion of univalence, which we restate from [GK16] (see also [Ras21b,
Theorem 4.4]) in the internal setting.

Construction 7.2. Let C be a finitely complete (∞, 1)-category. Recall that a discrete
cocartesian fibration in C is an internal functor f : E → B such that (d1,f1) : E1 →
E0 ×B0

B1 is an equivalence.
Lifting the construction of [GK16, Theorem 2.10] to the cartesian closed (∞, 2)-category

Cat(C), one can construct for any discrete cocartesian fibration f : E → B in C an in-
ternal category Eq/B×B(ϖ

∗
1E,ϖ

∗
2E) over B × B (where ϖ1,ϖ2 : B × B → B are the two

projections) characterising equivalences between fibres of f.

Definition 7.3 (Univalent fibration). A discrete cocartesian fibration E → B internal to
C is univalent if B→ Eq/B×B(ϖ

∗
1E,ϖ

∗
2E) is an equivalence.

Example 7.4. It is shown in [Cis19, Proposition 5.3.13] that the universal discrete cocartesian
fibration ∞-Grpd• → ∞-Grpd (in the (∞, 2)-category (∞, 1)-Cat = Cat(∞-Grpd)) is
univalent.

Using this characterisation, one can show (though we omit the proof here as this
result is only used for motivation) that for any globally saturated algebraic pattern Pinrt

all of whose morphisms are inert, the construction SpanPinrt(−) : (∞, 1)-Cat
(P-cplt) →

Cat(SegPinrt(∞-Grpd)) preserves classifying discrete cocartesian fibrations:

Proposition 7.5. Let G• → G be a univalent discrete cocartesian fibration. Then SpanPinrt(G•)→
SpanPinrt(G) is a univalent discrete cocartesian fibration internally to SegPinrt(G).

For an algebraic pattern with non-trivial active morphisms, the situation becomes
richer and goes beyond the (∞, 2)-topos theory of internal categories in presheaf (∞, 1)-
topoi. Indeed, theorem 5.7 shows that, even when restricting our attention as we are
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doing here from weak Segal fibrations to strong ones, the morphisms of interest will
be the lax morphisms, the maps of underlying weak Segal fibrations. We will thus
use a notion of lax univalence, obtained by replacing strong morphisms by general
lax morphisms of categorical Segal P-∞-groupoids in the definition of univalence for
fibrations in SegP(∞-Grpd).

Conjecture 7.6. Let G• → G be a univalent discrete cocartesian fibration. Then SpanP(G•)→
SpanP(G) is a lax-univalent discrete cocartesian fibration internally to SegP(G).

This conjecture states that SpanP(G•)→ SpanP(G) classifies a class of discrete cocartesian
fibrations. It remains to see that every such class is classified by a universal fibration of
this form.

Conjecture 7.7. Suppose
(
G

(κ)
• → G(κ)

)
κ∈K is a sufficient family of univalent fibrations

for (∞, 1)-Cat. Then the family
(
SpanP(G

(κ)
• ) → SpanP(G

(κ))
)
κ∈K provides enough

lax-univalent fibrations for Cat(SegP(∞-Grpd)).

Corollary 7.8. Let P be a globally generated algebraic pattern and X → P be a Segal P-
fibration, and assume that conjecture 7.6 and conjecture 7.7 hold. Then Segal X-objects in∞-Grpd are internal discrete cocartesian fibrations over the straightening X of X.

Proof. The key point is that, by [GK16, Proposition 3.8], if G(κ)
• → G(κ) is univalent then

G(κ) is a full sub-(∞, 1)-category of∞-Grpd, from which it follows that lax morphisms
X → SpanP(G

(κ)) can be seen as lax morphisms X → SpanP(∞-Grpd). By the two
conjectures, discrete cocartesian fibrations over X are the same thing as lax morphisms
X → SpanP(∞-Grpd) (factoring through some SpanP(G

(κ))). At the same time, by the-
orem 5.7, the latter are the same thing as Segal X-objects in∞-Grpd (or, to be precise, in
some G(κ)), which proves the result.

Example 7.9 (Double fibrations and Segal fibrations). For the algebraic pattern, corol-
lary 7.8 says explicitly that discrete cocartesian fibrations of double ∞-categories cor-
respond biunivocally to lax double ∞-functors to the double ∞-category of spans (of∞-groupoids). This is precisely an ∞-categorical version of the main construction
of [Lam21]. This use of internal discrete fibrations is also very similar to how [Ras21a]
deals with fibrations of Segal spaces (see also [Lou23, §6.1.1] for the version for fibra-
tions of ω-categories).
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