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Abstract

Following [MR18a] and its companion [MR18b], we describe a categorification of genus
0 Gromov-Witten theory. The moduli stacks M, (X, B) of stable maps to a variety
X allow one to exhibit a structure of Cohomological Field Theory on the Chow ring
A*X, seen as a structure of algebra over the operad (A, My ,)n. Introducing the derived
enhancements RM, (X, B), we lift this structure to a lax algebra over (M), seen as
an operad in correspondences in derived stacks.
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Introduction

Quantum field theory in a given space X studies integrals of certain geometrically
relevant quantities over a space parameterising the possible “paths” in X. In the
language of algebraic geometry, this is recognisable as intersection theory over moduli
spaces, that is to say as enumerative geometry. A case under particular study is the
so-called non-linear topological o-model, modelling the propagation of a topological
quantum string in the algebraic variety X. In this case, the geometric problem studied
is that of embeddings of projective curves in X. This is the basis for Gromov-Witten
theory.

The Gromov-Witten invariants of a proper scheme X can be defined through inter-
section theory on a moduli stack M, (X, ) parameterising maps from nodal curves of
genus g with n marked points to X mapping the fundamental class of the source curve
to the cycle class 3 € A;X, required to satisfy a stability condition. The Gromov-Witten
invariants are the degrees of certain cohomology classes in A*X, which by the projec-
tion formula can be seen as the degrees of classes in the Chow rings of the moduli
stacks M, of stable curves of genus g with n marked points. These classes are in fact
induced by inverse and direct images along a universal diagram

Mg,n(xa B)

V ev=(evy,...,evn ) , (0,1)

M Xn

where the map Stab corresponds to forgetting the map to X and stabilising its source
curve, and the maps ev;, i = 1,...,n correspond to evaluating the map at the curve’s
n marked points.

Similar invariants can be defined in the G-theory of the schemes, by applying the
functor of Grothendieck K-groups to the universal diagram. In fact, this procedure
suggests that Gromov—-Witten invariants should be defined in all motivic contexts,
which by Ayoub’s formalism of crossed 2-functors are equipped with Grothendieck’s
six operations providing the required direct and inverse images. It was suggested
by Manin (see for example [Man17]) that Gromov-Witten invariants should exist at
the level of motives. In particular, following the route suggested by the G-theoretic
invariants, we would like to define a categorification of Gromov-Witten theory by lifting
the invariants from operators on G-groups to functors between (suitable enrichments
of) derived categories of coherent sheaves.

However, it is not possible to directly generalise the above construction to derived
categories as the “direct image” along the forgetful stabilisation morphism must in
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fact be a virtual direct image, that is the pushforward must be preceded by a twisting
by a virtual class (in Chow homology the virtual fundamental class, and in G-theory
the virtual structure sheaf) on M—W(X, ), whose construction is not natural. This
necessity comes from Kontsevich’s “hidden smoothness” philosophy, according to
which the highly singular stack M,,(X, ) can be only seen as being quasi-smooth in
a context which naturally incorporates the higher cohomological information coming
from the singularities. This context has been realised by derived algebraic geometry,
and so in order to have the virtual classes appear naturally we must treat M, (X, B) as
nothing but the classical truncation of a true derived moduli stack R/\/I—W(X, ) whose
structure sheaf induces the virtual structure sheaf.

Thanks to this construction, it then becomes possible to lift the structure of Gromov-Witten
classes not only to the level of derived categories, but even of correspondences between
derived stacks, the action being given directly by the derived enhancement of (0.1).
This is what has been achieved in [MR18a], and what we will study in this text.

Since structures in higher categories are given with an infinite tower of coherences,
it is often very difficult to write down functors between co-categories and should
rather be obtained by universal properties from some elementary co-functors. In our
case, we cannot simply check that the derived correspondences carry the coherences
defining the structure of Gromov-Witten theory. When Gromov-Witten classes were
first defined, it was soon recognised that they could be organised in the structure of a
Cohomological Field Theory, which itself can be summed up as nothing but an algebra
over the operad formed by the Chow groups of the moduli stacks of stable curves.
We will use this principle to exhibit the Gromov-Witten action as an algebra over an
appropriate co-operad.

It was discovered by Toén[Ioé13] that this algebra structure is a particular case of a
very general phenomenon, called brane action, which implies that the space of binary
operations O(2) of any coherent co-operad © carries a structure of D-algebra in co-
correspondences, which after application of the co-fuctor represented by a required
space X gives an 9-algebra structure on X in correspondences. As the co-operad
governing the Gromov-Witten moduli stacks is not coherent, this theorem cannot be
applied directly; however the algebra structure can still be constructed, albeit in a lax
form, for non coherent co-operads. This means that our action will in fact take place
in the oco-bicategory of spans of spaces (or rather derived stacks), with non-invertible
coherences. It is known from [Hau1y, Corollary 12.5] that any (oo, n)-category of
iterated spans is fully dualisable, so by the cobordism hypothesis, the objects appearing
in our correspondences must correspond to two-dimensional fully extended topological
tield theories, that is topological string theory: from this point of view, the appearance
of the oo-bicategory of spans in Gromov-Witten theory was inevitable.

Organisation of the text

To study Gromov-Witten theory in its natural setting, we must thus work with derived
algebraic geometry and higher categories. To motivate this language, we open|chapter 1|
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by a discussion of the construction of the virtual structure sheaf of a Deligne-Mumford
stack, focusing especially on the role of the cotangent complex. We then introduce
in [section 1.2]some basic notions and results about co-categories and derived geometry
that we will need, and finally in we bring these constructions together by
showing how to reinterpret the virtual structure sheaf of a classical algebraic stack as a
shadow of the true structure sheaf of a derived enhancement.

In we discuss co-operads, the structure that will be used to classify the
genus 0 moduli spaces. We first present, in two models for higher operads,
and their generalisation for operads enriched not simply in spaces but in an arbitrary
oco-topos of derived stacks. We then describe, insection 2.2} the general phenomenon of
brane action for a coherent co-operad giving rise to the Gromov-Witten action: since we
shall need the lax version for non coherent operads, we spend some time describing of
to think of lax morphisms of (oo, 1)-operads, then we introduce the relevant definitions
and construct the brane action.

In|chapter 3| we turn our attention towards Gromov-Witten theory. In a first time, we
present in|section 3.1{the moduli spaces of stable curves with their (modular) operadic
structure, which we complement in[section 3.2|by the algebra structures induced by
the moduli spaces of stable maps. In an independent we introduced the
more general notion of e-stable quasimaps to a GIT quotient. Although we have not yet
studied them further, we intend to extend the results of the next chapter to this setting.

Finally, in the as yet unfinished we specialise the results of
and to the moduli stacks studied in

Prerequisites

Since this text is its author’s Master’s thesis, it is adapted to the Master’s courses
followed during the corresponding year. This means that we take the following subjects
as prerequisites: étale cohomology, algebraic operads|[LV12], intersection theory[Fulg8],
derived categories of sheaves and their Verdier duality, homotopy theory of model
categories.
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Part 1

Preliminary constructions



Chapter 1

Virtual sheaves and derived stacks

1.1 The virtual fundamental class

1.1.1 The cotangent complex, deformations and obstructions
1.1.1.1 The relative cotangent complex of a ring map

Let T be a topos, and A a ring object of the category ¥ (this general setup allows us
to consider the case T = Get, where A represents an affine scheme, and T = Gho(X)
with A = Ox). Let A — B be an A-algebra; then the cotangent complex is the object
Ly A € D=°(Modg) defined by

Lg/a = Qpp)./a P% B (1.1)

where B — P(B), is a free resolution of B, typically the standard simplicial free A-
resolution P(B), = A[-- - [A[B]] - - -] with its augmentation morphism, and where Qg/x
is the cotangent module, representing A-derivations of B. Since we will only consider
IL§ A as an object of the derived category, the choice of resolution does not matter up to

isomorphism. The augmentation L, A — Qpya induces an isomorphism H°(L$, / A) =

Qg/a. The universal property of Ly ,, in terms of derivations, is only seen at the derived
JRY —

level, as in |section 1.2.1.2} We also define the tangent complex T} , = (L},
R¥Hom(Ly p, A).

Let (f, f%): (X, 0x) = (Y, Oy) be a morphism of ringed spaces, giving a homomorph-
ism of rings f*: Oy — f,Ox in Sho(Y), which corresponds by adjunction to f~'Oy — Ox
in Ghv(X). We then define the relative cotangent complex of X over Y as

Ly = Lo, 410, € D=*Mody, . (1.2)
IfU c (X,0x) and V C (Y,0y) are affine open subschemes such that f(U) C V,
respectively Spec B and Spec A, then L5 0 I[jg//A ([Stacks, Tag 08T3]), where the

functor e is the defining equivalence Mooy — NCohgpep- If Y =Speck and X — Yis
the structure map of a k-scheme, then I , is simply written L}, and called the absolute
cotangent complex of X.

Proposition 1.1.1.1.1 (Functoriality properties).



1. [Stacks, Tag 08QX] Let A — B — C be ring maps in X. The triangle
L L
]LI'B/A%)C%]L'C/AHL'C/B% (LE/A%)CH]) (1.3)

is a distinguished triangle in D=°9Modc. In particular, morphisms of schemes X RERVEN
Z induce a distinguished triangle f*L§/Z — L?(/z — ]L’;</Y — f*]L&/Z[]].

2. [Stacks, Tag 08QQ](Base change) A commutative square
B +—— B
T T (1.4)
Al ——A
of ring maps induces a morphism Ly, , ®g B’ — L3, ,,, which is a (quasi-)isomorphism
if the square is cocartesian.

The cotangent complex controls the deformation theory of A-algebras in the following
way. A typical problem of deformation theory has the following form: let

0 s 1 < s B » s 0
l | l (1.5)
0 ----- ] - »ooo——- » C -——-- » 0

be the data of a square-zero extension of an A-algebra B by the A-module I (which
becomes a nilpotent ideal of B), for example corresponding to an infinitesimal thick-
ening of A-schemes SpecB — SpecB, and a morphism from the pair (B, 1) to the
pair (C,]); we seek a square-zero extension of C by | and a morphism of extensions
inducing the diagram. Then the group Ext3 (L& /»]) contains a canonical obstruction
whose vanishing is equivalent to the existence of a solution to the lifting problem. In
that case, the set of solutions forms a torsor under the group Ext} (L¢ /> J), and the

automorphism group of a given solution is canonically identified with Ext} (ILg /By ))-

Definition 1.1.1.1.2 (Obstruction theory). Let X be an S-scheme; an obstruction theory
for X is a morphism X* — IL§  in the derived category D=°(9010dy, ) such that

1. H'(K*) is coherent, for i = —1,0;

2. HO(K*) — f}CO(L;US) is an isomorphism and H'(X*) — H™! (Lg/s) is an epi-
morphism.

Equivalently, it is given by a morphism Ty ,; — (X*)*'. An obstruction theory
X* — Ly /s is said to be perfect if in addition X* is locally, over an open U, isomorphic
to an object [ — €°] of DY (900, ) € D°(Mody, ) whose components E! are
locally free sheaves of finite rank, in which case we say that X* is of perfect amplitude
in [-1,0]. If L  is of perfect amplitude in [-1, 0], we say that X is quasi-smooth (or
virtually smooth) over S.



Example 1.1.1.1.3. By [Avrgg, (1.2)], a morphism of ncetherian rings is a local complete
intersection if and only if it is quasi-smooth.

The virtual dimension of X relatively to a perfect obstruction theory £° is the locally
constant number vdimg. X = rk &% — rk &', A perfect obstruction theory is to be
understood[Beh14]] as a shadow on X of the (natural) cotangent complex of a derived

enhancement of X, in a way that will be made precise in

1.1.1.2 Algebraic stacks

While the cotangent complex explains the infinitesimal deformations of algebras, global
deformations, or moduli problems, often require too much information to be captured
by schemes and necessitate a degree of categorification. An infinitesimal deformation
problem for a scheme S is usually expressed as a functor on the category of artinian
algebras. The global formulation is a sheaf on the category of S-schemes with an
appropriate topology, associating to each S-scheme a set of equivalence classes of
families over it. If the moduli functor is a scheme, it is called a fine moduli space for
the moduli problem. When this is not the case, a better approach is to replace the
sets of equivalence classes of families by the corresponding groupoids, conserving the
information of how families can be equivalent. This requires the study of sheaves of
categories up to isomorphisms, or stacks.

A stack on a site (&, 1) is a pseudo-functor F: G — €at with values in the 2-
category of categories, such that the topology of universal effective F-descent is finer
than T; more explicitly, for any T-covering sieve R of any object S of &, the functor

F(S) ~ hom(&/S,F) — hbom(R,F) = Desc(R; F) (1.6)

is an equivalence. By the Grothendieck construction, a pseudo-functor G — Cat is
equivalently given by a fibered category [ F — & with a cleavage. The topology on &
can be transfered to this category [ &, and this allows one to talk of sheaves and stacks
over a stack.

An important example of stack is the quotient stack [X/G] of a scheme X by the
action of an algebraic group G. Over a scheme U, its category of sections is the category
of diagrams U «+— P — X where P — U is a G-torsor over U and P — X a G-equivariant
map. Let E* be a complex of abelian sheaves; then the map (tj01E*)°® — (tpo,E®)’
induces an action of the abelian group (T[O)HE')O, and we can define the stack

H'/HO(E®) = [(tonE")'/ (T, E®)°] . (1.7)

This is an example of a Picard stack, a stack in symmetric 2-groups (categories endowed
with associative and commutative bifunctors). The rule H'/H?° is functorial, and in
fact induces[AGV72] an equivalence between DO (M0, ) and the category of Picard
stacks and isomorphism classes of additive functors between them.

The infinitesimal lifting property characterising the cotangent complex of a morph-
ism of schemes can be reformulated in a global way in terms of Picard stacks. Let
f: X = Y be a morphism of schemes and let J be a quasicoherent Ox-module. Let



¢raly (X, J) denote the category of square-zero extensions of X over Y with ideal sheaf
J; it forms a Picard stack and there is an equivalence of Picard stacks[Olsoy, Theorem
8.2]

H'/H® (RHom(L )y, ) 1]) ~ Eraly (X, ). (1.8)

A geometric stack is a stack equivalent to the “quotient stack” of an internal group-
oid [G; =2 Gol, defined tautologically using the Yoneda lemma. Equivalently, its
diagonal morphism is representable and it admits a surjection, called an atlas, from
a representable stack, i.e. from an object of the base site. A geometric stack in the
smooth topology on the category of (affine) S-schemes is called an Artin stack over the
scheme S. An Artin stack whose atlas can be taken to be étale is a Deligne-Mumford
(DM) stack; a stack is DM if and only if it is an Artin stack and has unramified diag-
onal[LMoo| Theorem 8.1]. Both Artin and DM stacks are occasionally called algebraic.
Many properties of schemes and their morphisms can be adapted to algebraic stacks,
and we shall do so implicitly in the following. In particular, an algebraic stack X has an
étale site with “structure sheaf” Oy and an associated category of modules, and admits
a cotangent complex L3 s € D(90dy,).

1.1.2 The intrinsic normal cone

In order to construct a virtual fundamental class (or in our case a virtual structure
sheaf K-class) for a Deligne-Mumford stack, we wish to perform a deformation to the
normal cone. However, there is a priori no canonical embedding of a given DM stack,
so we need to consider all possible (étale-)local embeddings. This requires a closer
examination of cones over DM stacks.

1.1.2.1 Cone stacks

We generally call a cone over a Deligne-Mumford stack X the relative spectrum Spec(A)
of a quasicoherent sheaf A = ,.,A: of graded Ox-algebras. A cone 8Spec(A) is
called abelian if A is of the form Sym M with M a coherent Ox-module. Any cone
Spec P, Ai has an abelian hull Spec Sym A, of which it is a closed subcone. The main
example of a cone is the normal cone Cy/x = Spec @, I"/I"" of the embedding of
a closed subscheme U — X with ideal sheaf J; its abelian hull is the normal sheaf
Nuyx = Spec Sym J/J%.

A cone C over X naturally has a section 0: X — C as well as an A'-action. We call
a cone stack over X an Artin stack ¢ over X endowed with a section X — ¢ and an
A'-action, which étale-locally admits an A'-equivariant smooth surjection from a cone
over (an étale open of) X, which is called a local presentation of €. Any cone stack ¢
with a local presentation C — € is then locally given (A'-equivariantly) as [C/(C x¢ X)].
We define similarly abelian cone stacks and vector bundle stacks by requiring that a
(equivalently, any) presentation be smooth.

The structure sheaf Ox induces ring objects Ox g and Ox ¢ in the big fppf (faithfully-
flat-and-of-finite-presentation) and the small étale topoi Xg and X4 of X respectively.



The embedding of the étale site into the fppf site induces a morphism of topoi vg: Xg —
Xg. If an object K* € D=°(Modo, ) respects condition [1] of the [definition 1.1.1.1.2] of
an obstruction theory, then its associated Picard stack 3'/H°((Lv;X*)%") (where the
“right derived dual” is taken by the functor RJ{om(e, Ox 1)) is an Artin stack over X,
and in fact an abelian cone stack ([BFg7y, proposition 2.4]), which is furthermore a
vector bundle stack if X* is of perfect amplitude in [—1, 0].

Let X be a DM stack locally of finite type over k; its absolute cotangent complex
L% = L%, speck Verifies the condition quoted above and we define the intrinsic normal
sheaf of X as

Ny = H'/H® ((LvaLy)™) (1.9)

(if X is quasi-smooth it is a vector bundle stack over X). The intrinsic normal sheaf
admits a simpler étale-local description. We call a local embedding of X a local im-
mersion f: U — M of an affine k-scheme U of finite type in a smooth affine k-scheme
of finite type M, with an étale morphism i: U — X. Such a local embedding of X
induces an isomorphism [Ny m/f*Tm] = i*91x of cone stacks over U (where Ny /M is
the normal sheaf of U in M and Ty, the tangent bundle of M), so we can understand
MNx as being étale-locally presented by Ny x.

In the previous local description, we can replace Ny,m by the normal cone Cy,/m
to obtain a closed subcone [Cy/m/f*Tml. Then by [BFg7, Corollary 3.9], a morphism
j: (W, M) — (U, M) of local embeddings of X induces an isomorphism [Cy//m: /T ] ~
i*[Cum/T*Tm] of closed subcones of j* [Ny m/f*Twml. It follows that these subcones glue
to a closed subcone €x C 9, called the intrinsic normal cone, which is uniquely
determined by the property that, for any local embedding (LI, M) of X the square

Cum — Num

|l =

Qﬁx—ﬂﬁx

is cartesian, so Cx|; >~ [Cu/m/f*Tml. In addition, [BFgy, Theorem 3.11] ensures that 91x
is the abelian hull of €x as a cone stack.

1.1.2.2 Virtual structure sheaf

Let ¢: &* — L} a perfect obstruction theory; then H'/H® ((Lvj;€°)®Y) = €is an abelian
cone stack over X and ¢ induces $p®V: 9tx — &, which is a closed immersion (this is
equivalent to ¢ being an obstruction theory by [BF97, Proposition 2.6, Theorem 4.5]).
Equivalently, €x — € is a closed immersion of cone stacks.

We write € in the presentation [€;/&,], where & — &; is the dual complex of



&1 — &€°. The subcone stack €x < € induces a subcone C; C &;. We then set

. L
[OX5] = | 0c, @ 0x|  €K(X)
E‘_ . (1.11)
=Y (1) [Tor{"1(0c,,0%)],
i>0

called the virtual structure sheaf of X relative to the perfect obstruction theory ¢.
In this definition the K-theoretic (derived) tensor product is to be interpreted as a
K-theoretic (derived) pullback along the zero section of the local vector bundle &; — X.

Construction 1.1.2.2.1 (Reminders on K-theory). Let X be an algebraic stack. Its K-
groups K°(X) and K, (X) are defined as the Grothendieck groups of the additive cat-
egories respectively of vector bundles on X and of coherent sheaves on X, that is
(cf.[section 1.2.2.3) the quotient of the free abelian group on isomorphism classes of ob-
jects modulo the relations [E] — [E'] — [E”] for all exact sequences0 — E' - E — E” — 0.
The tensor product of locally free sheaves gives a ring structure to K°(X) and a K°(X)-
module structure on K, (X).

Let [F] € Ko(X). The functor — ® J is only right exact, so to obtain an exact sequence
from an exact sequence of coherent sheaves we must use its left-derived functor — @™ 7.
This induces a K-theoretic operation [§] — [GR"F] = > .. ,(—1)}[T or? X(G, F)]. Similarly,
for any proper f: X — Y, the direct image functor f. is only left exact so its right derived
functor induces Ko (X) = Ko (Y), [F] = [Rf.F] = Y o (—1) [R'.TF].

Remark 1.1.2.2.2 (Virtual fundamental class). Suppose X is a type of algebraic stack
for which we have an intersection theory A,X. We make one of the following two
assumptions:

(@) There exists a “Chern character” ¢: K,(X) — AX.

(b) €* admits a global resolution, that is an isomorphism (in D(9Modo, ), so a quasi-
isomorphism of complexes) with a two-term complex of vector bundles [F~! —
F°] concentrated in degrees [—1,0].

Then we can define a virtual fundamental class [X]j,")ir € Avdimge xX (Where vdimge X =
rk €0 —rk €7).

(a) We put [X]j" =td (%) ~ ¢ ([O;’gﬁb}) where td, is the associated Todd genus.

(b) We directly mimic the construction of the virtual sheaf in te setting of Chow
homology by defining [X]}" as the intersection of the closed subcone C(J*) :=
Cx xe¢ F1 C F; with the zero section of the vector bundle F;, that is [X]g}r =
0'[C(F*)].

From [BFg7, Remark 5.4] these two constructions agree when they are both possible.



We now describe two examples relevant for moduli spaces of (stable) maps from
curves.

Example 1.1.2.2.3 (Canonical obstruction theory of a mapping space). Let C be a pro-
jective curve with dualising complex D¢ (which is (C — Speck)'(k)) and X a smooth
projective scheme. Let M denote the scheme of morphisms from C to X, with functor of
points U ~» homy (C x U, X x U) =hom(C x U, X). Let f: C x M — X be the universal
morphism, and let m: C x M — M and p: C x M — M be the canonical projections.
Note that since C is projective, the morphisms 7t and C — Speck are proper (and in

particular we will use R7t, = R7r;). We have a cartesian square

CxM —"——> M

pl - l (1.12)

C — Speck

which by the functoriality property [2/induces a (quasi)-isomorphism 7Ly, — L, -
Concomitantly the two commutative (although not cartesian) squares

CxM —1— X CxM==CxM
l l and l l (1.13)
Speck == Speck C — Speck

give morphisms f*L§ — L2, and L, — Lg, - Altogether these maps compose
toe: "Ly — 7Ly,
By Verdier duality we have RHom(m* Ly, p'Dc) = 'RHom (LY, Rmt,p'Dc) where

R7t,p'Dc = Dy is the dualising complex for M (by proper base change alongleq. (1.12)

and adjunctions). The morphism RHom (e, p'Dc): mRHom(Ly,, Dm) — RHom(f* Ly, p'De)

induces by applying R then again the Verdier duality functor
RIHom(RmRHom(e,p'Dec), Dm): (112)

1.1

RHom(RmRHom(f* Ly, p'De)y, Dm) — RHom (R RIHom (LY, Dm), D), 4

whose target can be expressed by Grothendieck duality as
RHom(Rmm RFHom(LY,, D)y Dm) = RmRHom(m'RHom(ILy,, D), D)
= RmRHom(RHom (" Ly, p' D), mDy)  (1.15)
= R, (T"Ly,).
Then postcomposition with the adjunction counit R7t,7t* = 1 induces
RHom (RmRHom (LY, p'De), Dm) — RLY,. (1.16)
But by further Grothendieck duality we have
RHom (R, RHom (L, p'De), Dm) = R, RHom(RHom (L, p'De), 7w D)
= R, RHom(RHom(f*Ly, p'Dec),p'De)  (1.17)
= R, f*L§



Since 7, commutes with taking duals because 7t is proper and f* does too by property
of the inverse image, this eventually gives a morphism

$: & = (R, " Ty — L3, (1.18)

By [BF97, Proposition 6.2] this is a perfect obstruction theory.

Remark 1.1.2.2.4. The scheme of morphisms from X to Y is typically constructed as an
open subscheme of a Hilbert scheme of X x Y, parameterising the immersions of the
graphs of such morphisms, with ideal sheaves J, C Oxxy. The cotangent space at a
k-point x4 classifying g: X — Y is then Jr, /5% = g*Q} by [Kolg6, Theorem I1.2.16].
Example 1.1.2.2.5 (Canonical obstruction theory of a universal curve). Let t: € — 9
be a smooth morphism of relative dimension 1 between Deligne-Mumford stacks
which is a universal curve over (an open subset of) a moduli stack and such that the
relative dualising complex Doy is a line bundle in degree —1 with inverse D/, such
that RHom(—, Dejm) = (— @ D)™ (note also that Dopom = Ogy for Lgn). By the
functoriality property 1| of the cotangent complex, the distinguished triangle w3, —
L¢ — L§ o 7' L3, [1] furnishes the so-called Kodaira-Spencer map L$ m Ly, [1].
By Verdier duality we have a natural isomorphism RHom(7*—, D¢ /on) = 'RHom(—, Ogy),

which induces for any F* € D<*Mode,, §* € D="Modo,, a (quasi-)isomorphism of Ext
complexes

R homo, (F*,71°G*) ~ Rhomy,, (RHom(1*G*, De o), RHom(F*, De /o))
~ Rhomy,, (' RHom(G*, On), RHom(F*, Deom)) (1.19)
~ Rhomy,, ((§*)*", Rm,RHom(F*, De/am)) -
In particular, setting
e = (Rme}Com(Lgm,Dem))Rv
= (R (Lo @ Do) )™ = R, (L an @ Do)

we obtain from the Kodaira-Spencer map an arrow in the derived category £°* — Lj;.
By [BF97, Proposition 6.1 and remark], it is a perfect obstruction theory.

(1.20)

Remark 1.1.2.2.6 (Relative version). Let Y be smooth Artin k-stack of pure dimension, and
mi: X — Y arelative DM stack over Y. Then we can adapt the construction of the virtual
structure sheaf to this relative context by replacing the absolute cotangent complex L%
by the relative L5 ,, which satisfies the condition so that the relative intrinsic normal

cone Ny y = H'/H° ((]va*]]L; /Y)RV> is an abelian cone stack. We define likewise relative

obstruction theories as certain (absolutely) perfect complexes above L3 .

The previous examples generalise to the case of a relative cotangent complex (and
for example, infexample 1.1.2.2.3} C is a relative curve over the base stack).

Suppose X is absolutely DM of finite type and Y is locally of finite type. Let ¢: £* —
L% v be a relative perfect obstruction theory, and let ) be the composite £* — L y —
' Ly[1]. Then by [KKPo3, Proposition 3], the induced \: cone(n)[—1] — L is a perfect
obstruction theory, and moreover the two virtual structure sheaves obtained from ¢
and 1 coincide in K, (X).




1.2 Derived spaces

1.2.1 The co-category of derived rings
1.2.1.1 Modelling co-categories

Although derived algebraic geometry requires the theory of co-categories in an essential
way, it is model-independent, so it is possible to take the point of view presented in
[GR17] that one does not actually need to know the details of the constructions of
higher categories, but only what can be done with them. Nonetheless, we present some
elements of the language of a model for (oo, 1)-categories which will be useful. We
mainly follow [Lurog, chapter 1] and the shorter [Gro10], [Ant13]] and [GR17, chapter
L.1]. We also refer to for further details.

It is well accepted that the theory of co-groupoids, or (oo, 0)-categories, should be
equivalent to that of topological spaces up to weak homotopy equivalence. Indeed, the
homotopy type of a topological space is completely determined by its fundamental
oo-groupoid, and the homotopy hypothesis, which is taken as a guiding principle
for the definition of higher categories, states that every co-groupoid should arise as
the fundamental co-groupoid of a topological space. It is then natural to define an
(00, 1)-category as a category enriched in co-groupoids, that is a topologically enriched
category. Since we only care about the morphism spaces up to weak homotopy, thanks to
the Quillen equivalence Sing: Top = sSet: |-/, we would obtain an equivalent theory
by using categories enriched in simplicial sets. However the enrichment, in both cases,
is strict, and thus ill-suited both conceptually and for the development of further
aspects of the theory. A satisfying definition of (oo, 1)-categories would realise them as
categories with a lax enrichment in co-groupoids, with an infinite tower of coherences
ruling the compositions. It is not possible to give such a definition, so we must instead
seek a model which will contain those coherences.

Definition 1.2.1.1.1. An co-category (or quasicategory) is a simplicial set ¢ respecting
the weak Kan condition: for any n € N, for any inner horn A" — ¢,1 <i<n -1,
there exists a extension A™ — € to an n-simplex of € along the inclusion A" — A™.

Let € be an co-category. A 0-simplex of € is simply called an object. If x,y € &, are
two objects of €, a T-morphism from x to y is a 1-simplex f € &; such that d°(f) = x
and d'(f) =y. If f, g are 1-morphisms with d°(g) = d'(f), the datum defines a horn
A} — €, which then lifts to a 2-simplex 0, which we view as expressing a way that the
T-morphism d'(0) is homotopic to the composite g o f of f by g.

Given any pair of objects (x,y), there exists a mapping space Map(x,y) € sGet,
obtained for example by considering the corresponding hom in the associated simplicial
(or topological) category. We can then associate to any co-category € its homotopy
category Ho(¢), which is a T-category with objects those of ¢ and morphism sets
homgoe) (X, y) = o Map,(x,y). Given a simplicial set J and an co-category ¢, the
simplicial set Map(J, €), is an co-category. If J is also a quasicategory, we call it the co-
category of co-functors, and denote it Fun(J, €). Its vertices are maps of simplical sets,
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referred to here as co-functors. We then see that the co-categories form an co-category
Cat, themselves, and in fact even an (oo, 2)-category:.

Construction 1.2.1.1.2 (Dwyer—Kan localisation). Let € be an co-category with a se-
lected class of morphisms W. A derived localisation of ¢ with respect to W is an
oo-category ¢[W ] endowed with an co-functor £: ¢ — ¢[W'],, such that for any
oo-category © the induced map

Fun(eW ', D) — Fun(¢, D) (1.21)

induces an equivalence with the full subcategory of co-functors sending all arrows in
W to equivalences in ©.

In the case where 91 is a simplicial model category with class of weak equivalences
W, the localisation of the corresponding co-category N (1) can be constructed as the
simplicial nerve N (9M.¢) of the full subcategory of fibrant—cofibrant objects in 1.

In order to work with sheaves, we shall also need the notion of cartesian and
cocartesian fibrations of co-category, for which there exists a higher version of the
Grothendieck construction.

Definition 1.2.1.1.3 (Cartesian fibration). e [et P: § — € be an co-functor. A

morphism ¢: & — P in §, lifting P& = X POty PV in €, is P-cartesian

if the canonical map §/z — Ty Xe,, €)x it induces by postcomposition is an

equivalence. We also call (, ¢) an inverse image of 1\ by f, written f*\» N V.

* The oco-functor P is a cartesian fibration if every morphism of ¢ admits an inverse
image for every object of § lifting its target.

¢ Dually, P is a cocartesian fibration if P°?: §°° — €°P is a cartesian fibration.

Theorem 1.2.1.1.4 (Grothendieck construction). Let € be an oo-category. There are equi-
valences of categories [ : Fun(€P, &) ~ Carte, and Fun(¢, &) ~ CartiTe.

Remark 1.2.1.1.5. Having established that there is a model for co-categories, we will
whenever possible work in a model-independent manner. In particular, a category
¢ will implicitly be considered as a trivial example of co-category without taking its
nerve.

1.2.1.2 Some commutative algebra for derived rings

We let T denote the category whose objects are pointed finite sets ((n) ={0,...,n},0)
and whose morphisms are maps of sets preserving the marked point. For any n and
any 0 <1i<mn,letpl': (n) — (1) be the arrow defined by pI'(j) = &;; for all j € (n).

Definition 1.2.1.2.1 (Monoidal co-category). A symmetric monoidal co-category is a
cocartesian fibration 0% — N(T') (equivalently, an co-functor N(T') — €at,,) such that
Q]% is contractible and, for every n, the co-functor ((p})y, ..., (pR))): Q]i’l> — (‘1]%)” is
a categorical equivalence.
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Let k be a field of characteristic 0. The basic objects in derived algebraic geometry
are the so-called derived rings, which can be modelled as simplicial k-algebras. Since
we work over a base field of characteristic 0, we may as well apply the Dold—Kan
correspondence and use dg—k-algebra The category 290t00:° of derived k-modules
is defined as the derived localisation of the category of connective differential graded
k-modules at the class of quasi-isomorphisms. The tensor product endows 290t00=°
with a symmetric monoidal co-category structure, and we let 92Ig=° be the category
of commutative monoids in it. If A € bﬂlgfo, we write m,A == H™(A) for any n > 0.
The (discrete) ring 7oA is called the classical part of A.

For any derived k-algebra A € ?2lg:°, we also have an co-category of A-modules
0Mod (not necessarily bounded), with a tensor product, and its co-category of mon-
oids 2Alg, ~ dAlG="/A.

Definition 1.2.1.2.2 (Space of derivations). The space of A-derivations of B with coeffi-
cients in M is the space of sections of the projection t3: B & M — B.

In other words, it is:
* the mapping space Map . (B, B & M);
* the homotopy fiber of 73 ,: Map(B,B @ M) — Map(B, B) at 15.

Lemma 1.2.1.2.3. The co-functor M ~ Dera (B, M) is representable by an object Ly , €

09Nody, ie. there is a functorial equivalence Dera(B,—) — Map, . (ILy 2, —). The rep-
resenting object is obtained as 1L : Qges)/a @qe) B, with Q(B) a cofibrant replacement of
B.

Proposition 1.2.1.2.4. A morphism A — B in 0lg:° is an equivalence if and only if it
induces an isomorphism H°(A) — H°(B) in Alg, and Ly, ~ 0.

Definition 1.2.1.2.5 (Properties of morphisms). Let f: A — B be a morphism in DQL[Q%O.
Then f is said to be

finitely presentated if the co-functor Map . (B, —) commutes with filtered colimits;
flat if — ®a B preserves finite colimits;

formally smooth if forany M € 991005 such that H’(M) = 0, we have Map(L¢, A M) =
0;

formally étale if Ly , ~0;
smooth if it is formally smooth and finitely presented;

étale if it is formally étale and finitely presented;

'In positive characteristic, the category of dg-algebras does not admit a model structure whose weak
equivalences are quasi-isomorphisms and whose fibrations are degree-wise surjections.
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a Zariski open immersion if it is flat, finitely presented, and the product B, B = B
is an equivalence.

Definition 1.2.1.2.6 (Strong morphism). A morphism A — B in d2lg;" is strong if the
induced map 7B ®r,o miA — ;B is an equivalence for all i > 0.

Theorem 1.2.1.2.7. A morphism A — B in dlg:" is flat (resp. smooth, étale, a Zariski open
immersion) if and only if it is strong and the induced map oA — B of discrete rings is
classically flat (resp. smooth, étale, a Zariski open immersion).

1.2.2 Atlases for stacks
1.2.2.1 Sheaves of spaces

Definition 1.2.2.1.1 (Presheaves). Let 2 be an co-category. A presheaf with values in
2 on an oo-category € is an co-functor €°P — 2.

In particular, when 2 = &, a presheaf of spaces is also simply called a presheaf, or a
prestack.

Categories of presheaves are determined by their exactness properties, so we must
introduce the notion of (co)limits. Recall that in a (co)complete (1-)category €, the
(co)limit functor for shape category J is the functor of right (left) Kan extension along
J— *

Construction 1.2.2.1.2 (Adjunction and Kan extensions). An co-functor € — D is
a diagram of oo-categories of shape the interval category [1], that is an co-functor
F: [1] — Cat,, which we can also see as a cocartesian fibration f]-“ — [1]. Its partially
defined right adjoint is the full subcategory of | F consisting of objects which are the
source of a cartesian morphism over 0 — 1. It gives a cartesian fibration over [1], so an
oco-functor [1]P — €at,,, determining an co-functor ® — €.

Let K: J — £ be an oo-functor, and let € be an co-category. The partially defined left
and right adjoints to £*: Fun(£, €) — Fun(J, €) are called respectively left and right
(partially defined) Kan extensions.

Definition 1.2.2.1.3 (Limits). Let D: J — € be an co-functor. The colimit (respectively
limit) of D is the right (resp. left) Kan extension along P: J — x*:

li%>n D = Ranp D and %n D = Lanp D. (1.22)

The colimit (resp. limit) is the initial (reps. final) object in the co-category of cocones
under F (resp. cones over D), determined up to a contractible space of choices. If € is
presented as the derived localisation of a simplicial model category 91, the (co)limits
in € coincide with homotopy (co)limits in 9)t. For this reason, we shall often adorn
(co)limits in co-categories with an “h”, especially when they are limits of objects of a
1-category embedded in an co-category.

An oo-category is said to be (co)complete if it has all small (co)limits, and an oo-
functor is (co)continuous if it commutes with small (co)limits.
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Proposition 1.2.2.1.4. [Lurog, Theorem 5.1.5.6] Let € and © be two oo-categories. There is
an equivalence of co-categories Fun®im(BPSH(C), D) = Fun(¢, D) (induced by the Yoneda
embedding of €), where Fun "™ indicates the colimit-preserving co-functors: the Yoneda
embedding into the presheaf co-category is a cocompletion.

We can now turn our attention to descent conditions. An co-site is simply a small
oo-category € equipped with a Grothendieck topology T on its homotopy category.

Definition 1.2.2.1.5 (Hypercovering). Let (&, 1) be an oco-site. A 1-hypercovering of
an object C € € is an augmented simplicial presheaf F,: AP — PE&Sh(¢) such that
J_; is the Yoneda reprenstable presheaf of C and for every [n] € A the map J, —
(coskn_1 F,)n is T-covering (where cosk,_; is the (n — 1)-coskeleton, right adjoint to
the restriction (A<, — A)*).

A hypercovering is effective if its totalisation (colimit) is the augmentation.

Definition 1.2.2.1.6 (Derived stack). A derived stack on an oco-site (€, 1) is an oco-
functor X: €°P — & such that for every object C and every effective hypercover J, of
C, the map

X(C) = Map(C, X) = Map (h_r)n T,y x> — Jim Map (5, X) (1.23)

is an equivalence in &.

We write 06¢(€) the co-category of derived stacks, and simply 0&t when the site is
unambiguous.
A stack oo-topos is an co-category equivalent to 9&¢(¢) for some co-site (&, T).

Example 1.2.2.1.7 (Affine schemes). Let € = 02llg:=° with the étale topology. Any derived
ring A defines a representable derived stack, denoted Spec A. If A is a discrete ring,
we have to(Spec A) = Spec® A for its classical truncation, where Spec® denotes the
classical (underived) spectrum of a ring, the Yoneda embedding on lg,.

1.2.2.2 Derived algebraic stacks

Definition 1.2.2.2.1 (Geometric context). Let € be a monoidal co-category. We let
2Aff, = €Alg(€)?, endowed with a quasi-compact topology such that for any family
{Ci}i of objects the family {C; — []; Cjh is a covering family. A geometric context is
a class P of morphisms in 2jff, stable by composition, equivalences and (homotopy)
tibred products such that

* any morphism in a covering family is in P,

* being in P is a local property (for any f: X — Y in P, if there exists a covering
family {p;: U; — X}; of X such that all the composites fp; are in P, then f is in P),
and
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e forany X,Y € 2ff,, the natural morphisms X,Y = X II" Y are in P.

We will simply say of a morphism belonging to P that it is P.

Lemma 1.2.2.2.2. [TV 08, Lemma 1.3.2.12] Let {C; — C} be a family of P morphisms. Then
[IICi — CisalsoP.

Definition 1.2.2.2.3 (Geometric stack). Let € be a monoidal co-category, and let P be
a geometric context on 2ff,. We define recursively (on n € N U {—1}) the notion of
n-geometric stack for the context P. We will then say that a derived stack on 2ff, is
geometric if it is n-geometric for some n.

Base case:

Fixn > 0:

* A derived stack is (—1)-geometric if it is affine, that is representable.

A morphism of derived stacks f: X — Y is (—1)-representable if for any
representable stack Z — Y over Y, the homotopy fibred product X x{ Z is
(—1)-geometric.

A morphism of derived stacks f: X — Y is (—1)-P if it is (—1)-representable
and for any Z — Y in 96ty the induced morphism X x} Z — X of repres-
entable stacks is P.

* An n-atlas for a derived stack X is a family {U; — X}i¢; such that each
U; is (—1)-geometric (i.e. representable), each U; — X is (n — 1)-P, and
[T — X is an epimorphism.

A derived stack X is n-geometric if it admits an n-atlas its diagonal morph-
ism is (n — 1)-representable.

A morphism of derived stacks f: X — Y is (n)-representable if for any
representable stack Z — Y over Y, the homotopy fibred product X x]g Z is
(n)-geometric.

A morphism of derived stacks f: X — Y is (n)-P if it is (n)-representable
and for any Z — Y in 96ty the derived stack X x{ Z admits an n-atlas
{U; — X x} Z} such that each composite U; — X between representables is
P.

As for classical geometric stacks, there is an alternative characterisation of geometri-
city in terms of “quotients” of internal co-groupoids.

Definition 1.2.2.2.4 (Segal groupoid objects). ~ ® Let € be an co-category. A Segal
groupoid object in € is a simplicial object C, € Fun(A°, €) such that the morph-
ismdy x di: C; — C x*c‘o C; is an equivalence, and for any n > 0, the natural
morphism []; 0i: C, = Cy x¢, -+ x¢, C is an equivalence.

* A Segal groupoid J, in 06t is an n-P Segal groupoid if the stacks F; and F; are
disjoint unions of n-geometric stacks and the morphism dy: F; — J is n-P.

Note that (by the discussion following [TVo08| Definition 1.3.4.1]) if J, is n-P Segal,
then all its faces F; — JFi_;.
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Theorem 1.2.2.2.5. [TV 08, Proposition 1.3.4.2] Let X be a derived stack, and let n > 0. Then
X is n-geometric if and only if there is an (n — 1)-P Segal groupoid object U, in 0St with an

isomorphism X ~ |[U,| = Rlim _ .

Definition 1.2.2.2.6 (Derived algebraic geometry). For derived algebraic geometry we
will work in the monoidal co-category € = 29000 of dg-vector spaces over the field
of characteristic 0 k. We write 02ff := ff, = DQl[gf"Op.

We will usually endow 2ff with the étale topology. A geometric derived stack for
the context consisting of étale morphisms is called a derived Deligne-Mumford stack.
A geometric derived stack in the context of smooth morphisms is called a derived
Artin stack, or a derived algebraic stack.

The inclusion Alg, — ?Alg:" induces by composition a functor Fun(dAffP =
DQLIQEO, &) — Fun(AffP = Alg,, &) restricting to the truncation functor t,: DGt(Dwgfo)
06t(Alg,). By [TVo8, Lemma 2.2.4.1], it admits a fully faithful left adjoint . The trunca-
tion functor commutes with homotopy limits and colimits, while the extension functor
t commutes with homotopy colimits, but not homotopy limits in general.

We will usually omit writing down t, especially when considering a truncation t(X)
again as a derived stack.

Definition 1.2.2.2.7 (Monos and epis). =~ ® A morphism of derived stacks a: F — §
is an epimorphism if the induced morphism 7, (to(F)) — mo(to(SG)) of sheaves
of sets on (Aff,, Te) is an epimorphism.

* A morphism of derived stacks a: ¥ — § is a monomorphism if its diagonal
morphism Aq: F — F xg F is a equivalence.

Property 1.2.2.2.8. [TV 08, Proposition 2.2.4.7] The components of the counit j: ity = Lyeq
are closed immersions jy: toX — X.

Definition 1.2.2.2.9 (Zariski open immersion). Let X be a derived stack over d2(jf.

¢ Amorphismu: X — Spec A to an affine derived stack is a Zariski open immersion
if it is a monomorphism and there is a family {j: Spec A, — Spec A} of Zariski
open immersions of derived rings such that each j, factors through uwas wop,,
Pua: Spec Ay — X, where [ [, pa: [[,Spec Ax — X is an epimorphism.

* LetY be a derived stack. A morphism X — Y is a Zariski open immersion if for
any 8 — Y with § affine the base change X xy 8§ — 8 is a Zariski open immersion.

Property 1.2.2.2.10. Let X be a 0-truncated algebraic stack. If i: U — X is a Zariski open
immersion, then U is also O-truncated.

Proof. We may assume that X is affine, X = Spec A with A € 2lg, a discrete ring. Fix

an epimorphism [ [, Ay P, 1( such that each ipy: Spec Ay — Spec A is a Zariski

open immersion. In particular A — A, is strong, so A is a classical ring. The proof is
then finished by induction on the geometricity of U as in [TVo08, Proposition 2.2.4.4

(4)]- O
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Proposition 1.2.2.2.11. [TV 08, Corollary 2.2.2.10] Let X be a derived affine scheme. There is
an equivalence of co-categories from the co-category of Zariski open immersions into X to that
of Zariski open immersions into to(X).

Corollary 1.2.2.2.12. [STV15, Proposition 2.1] Let X be a derived algebraic stack. There is a
bijection ¢ from the set of (equivalence classes of) Zariski open substacks of to(X) to that of
Zariski open derived substacks of X. For any Zariski open substack U C to(X), the diagram of
derived stacks

— to(X)

u
| i (1.24)

Px(U) ——— X
is homotopy cartesian.
Proof. We construct ¢y by defining its action on a Zariski open substack U of ty(X) as
b (U): AL’ € A ns U(TOA) X 5y mon) X(A) (1.25)
where the map X(A) — to(X)(mA) is induced by the map
Map, (Spec A, X) — Map,(to Spec A = Spec® oA, tX) (1.26)

of the co-functor ty: 906t — &t. If A is a discrete ring then, by definition of the
truncation, ty(X)(A) = X(A) and we recover ¢ (U)(A) = U(A), thatis to(d(U)) = U,
or ¢y (U) is a derived enhancement of U (and t, is left inverse to ¢y). We see from
that t, is also right inverse to ¢y because a Zariski open immersion is locally given
by a strong morphism of derived rings. Since the truncation functor t, commutes
with homotopy pullbacks, we find to(dpx(U) x5 to(X)) = to(bx(U)) Xy to(teX) =
U x¢yx toX = U. By the above equivalence of categories, we can then identify the
homotopy fibre product ¢ (U) x% to(X) with U. O

1.2.2.3 Stable co-categories and Grothendieck K-groups

Recall that a zero object is an object that is both initial and final. An co-category with a
zero object is said to be pointed. In this case the zero object will always be denoted 0.

Definition 1.2.2.3.1 (Stable co-category). An oco-category 2 is stable if it is pointed,
has finite limits and finite colimits, and any square in it is cartesian (a pullback square)
if and only if it is cocartesian (a pushout square).

Example 1.2.2.3.2. Let A € 22lg:° be a derived ring. The co-category 99)t0d, is stable.
If A is a discrete ring, then Ho(09100,4) = D=M0da.

A coherent square in a finitely complete and finitely cocomplete pointed co-category
of the form
A—

B
l l (1.27)
C

0 ——
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is called a triangle. A triangle is said to be exact if it is a cartesian square, and coexact
if it is cocartesian.

Proposition 1.2.2.3.3. For a finitely complete and finitely cocomplete pointed oco-category to
be stable, it is sufficient (and necessary!) that a triangle be exact if and only if it is coexact.

A 2-simplex A — B — Cin a a finitely complete and finitely cocomplete pointed
oo-category 2 is called a fibre sequence if there is an exact triangle as in and
a cofibre sequence if there is such a coexact triangle. It follows that, if 2 is stable, then
a sequence is exact if and only if it is coexact.

Construction 1.2.2.3.4 (Suspension and desuspension). Let A € 2 be an object in a
finitely complete and finitely cocomplete pointed oco-category. We define the loop
space object QX of X by the fibre sequence OX — 0 — X. The suspension object ZX
of X is dually defined by the cofibre sequence X — 0 — IX.

These assignments give rise to adjoint co-functors X: 20 = : Q.

Proposition 1.2.2.3.5. A finitely complete and finitely cocomplete pointed co-category is stable
if and only if the suspension and loop space functors are mutually quasi-inverse.

fA 5B Cisa fibre sequence, we also say that f is a fibre of g, written f = fib(g).
If it is a cofibre sequence, we say that g is a cofibre of f, written g = cofib(f). This
defines adjoint co-functors cofib: Arr(A) = Ave(A): fib, where the arrows co-category
Are(A) is Fun(AT, ).

The fibres and cofibres should be seen as homotopy kernels and cokernels. Note
that we will often abuse notation and write C = cofib(f) if g is, or A = fib(g) if f is.

Proposition 1.2.2.3.6. A finitely complete and finitely cocomplete pointed co-category is stable
if and only if the fibre and cofibre functors are mutually quasi-inverse.

Suppose A — B — C is a (co)fibre sequence in a stable co-category. There is an
induced morphism C — ZA.

Theorem 1.2.2.3.7. The homotopy category of a stable category has a triangulated structure
induced by the suspension functor and the class of distinguished triangles isomorphic to the
triangles of fibre sequences.

Example 1.2.2.3.8 (Quasicoherent sheaves on a stack). Let X = Spec A be an affine
derived stack. We set QCoh(X) = Dimuaio. We also define the structure sheaf Ox €
QCoh(X) as A € 090005’
Let now X be a derived algebraic stack. We define its co-category of quasicoherent
sheaves as
NCoh(X) = @1 QCoh(Spec A), (1.28)

Spec A—=X

which thus comes equipped with co-functors x*: Q€oh(X) — QCoh(Spec A) for any
x: Spec A — X. The structure sheaf of X is the unique (up to equivalence) object
Ox € QCoh(X) such that for any A-point x of X we have x*Ox = Ospeca.

18



Definition 1.2.2.3.9 (Cotangent complex of a stack). Let X € 0&t(d2ff) be a derived
stack. Let x: Spec A — X be a point, seen also as x € X(A). We have an oco-functor

Der(Xy): DD)?ODEO — &,
M r hofib (X(A & M) — X(A), ) (1.29)
We say that X admits a cotangent complex at x if there exists LY | € 09M003° corepres-
enting Der(Xy).

We say that X has a cotangent complex if there is L} € Q€oh(X) such thatx*Ly = L3 |
for any x: Spec A — X.

Definition 1.2.2.3.10 (Grothendieck group). Let 2 be a stable co-category. We define
its Grothendieck group Ky(2) as the abelian group freely generated on the set 7, (A)
of equivalence classes of objects of 2, modulo the relations [B] — [A] — [C] whenever
there is a fiber sequence A — B — C.

If X is a derived algebraic stack, we denote Ky (X) the Grothendieck group Ky (Q€oh(X)),
called the K-theory of X, and we note G,(X) the Grothendieck group of the sub-oo-
category of perfect complexes, called the G-theory of X.

1.3 The virtual sheaf as a shadow of the derived
enrichment

1.3.1 Obstruction theories and derived enhancements
1.3.1.1 Obstruction theory induced by a derived structure

Definition 1.3.1.1.1 (Connectivity). A morphism f in 92llg:° is n-connective if 7, (f) =
0 forall 0 < k < n (where m, = H™*). An object A is n-connective if A — 0 is.
Similarly, f is n-coconnective if m (f) = 0 for all k > n.

Lemma 1.3.1.1.2 (Connectivity estimate). [Lur12, Corollary 7.4.3.2] Let f: A — B be
a morphism in 9lg=° such that cofib(f) is n-connective for some n > 0. Then L} is n-
connective.

Then from the fact that for any A € 2lg=° the canonical morphism A — 7(A)
has mapping cone [A°/d;'(A~") « A% « A7 + ...] whose ith homotopy groups
m; = H™' vanish for i < 2 (and then 7t;(cone) = m_;(A) for A > 2), we obtain the
following:

Proposition 1.3.1.1.3. [STV15, Corollary 1.3] Let RM be a quasi-smooth derived DM en-
hancement of a DM stack M, and let j = jryc: M — RM be the associated closed immersion.
The induced morphism j*ILy, — L3, is a perfect obstruction theory.

19



Proof. By the functoriality property of the cotangent complex we have a cofibre se-
quence j*Lgy — L3 — L3¢ gy Whose cofibre L3, . has been shown to be 2-connective.
Quasi-smoothness of RM means that L}, is 1-coconnective, which implies the propos-
ition. [

Hence, by direct application of the construction of section 1.1.2.2} a quasi-smooth
derived enhancement of M induces a virtual structure sheaf in Gy(M).

We now describe another process by which to obtain a virtual sheaf on M from a
derived enhancement.

The structure sheaf Oy induces a family of quasi-coherent sheaves 7 (j*Ory), 1 > 0
on M, which by abuse of notation we shall write 7t;(Ogyy).

Proposition 1.3.1.1.4. [T0é12] The quasi-coherent Oyn-modules mi(Ogy) are coherent on
o (Orn) = O, and only a finite number of them are non-vanishing.

Lemma 1.3.1.1.5. [Bar1s, Proposition 9.2] Let j: M — RM be a locally ncetherian derived
DM enhancement of a DM stack M. Then j..: Go(M) = Go(RM).

In fact we have (j,.) ' [Opad = > iso(=1)Hrm(Omra)]-

1.3.1.2 Derived enhancement determined by an obstruction theory

Let M be a classical Artin stack. Let ¢: £* — L3, be a perfect obstruction theory. Recall
from [section 1.1.2.2|that by [BF97y, Proposition 4.5], ¢ induces a closed immersion of
cone stacks ¢V: Cy — H'/HO((E*)RY) = ¢.

Definition 1.3.1.2.1 (Induced enhancement). The derived Artin stack RObs(¢) is the
homotopy fibre product

RObs($p) —— Cx
l o L,,v (1.30)

M%@

in the oo-category of derived stacks, where (: M — € is the zero section of the vector
bundle stack.

Proposition 1.3.1.2.2. The derived Artin stack RObs(¢) is a (non-trivial) derived enhance-
ment of M.

Proof. Note first that M also admits a closed embedding into its intrinsic normal cone,
so that the fibre product of (classical) Artin stacks M x¢ €y is again M. However the
inclusion t of classical stacks into derived stacks does not commute with products,
which explains why the homotopy fibre product can be non-trivial.

However, the truncation functor ty does commute with limits, so to(RObs(¢))
to(M) Xty to(€ae) = M x e Ep = M.

LIl
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Leti: M — RObs(¢) denote the canonical closed immersion.
Recall that the virtual structure sheaf was defined as [O}f, | = [O Eale, ®% e, On| =

ano Tl <[(‘) Eadle, ®Oe1 OM] ) This can clearly be identified with (i.) "' [Ogeps(e)] con-
structed above.

Remark 1.3.1.2.3 (Splitting). Since M, €y and € are classical stacks, we may also consider
the classical fibre product M in the category of stacks in groupoids over Ajf,. It
canonically provides a (commutative, hence in particular coherent) cone over the
diagram of (1.30), inducing a canonical morphism M — RObs(¢), which is the closed
immersion i: M — RObs(¢$) and makes the total diagram coherent:

&Obs — 5y - (1.31)
I

Mf—>€

In particular, we see that r o i is homotopic to 15, making r a retract of i. The exact
triangle of cotangent complexes associated to 1 is 1*ILg ;) — L3 — LY — T Lgeps4) 1],
and the one associated to ris L3 — L) — Lt — 17715 [1]. Applying the exact
oo-functor i* to the latter, we obtain L}, — i*Lﬁwbs( o) i*L2 — L3, [1]. This shows

L3 = fib(i"Liope(g) — 17Le) while L3 [—1] = fib(i*Lgpq) — L), (1.32)

providing a splitting i*ILﬁwbS( o) = L2[—1] @ L3,
Remark 1.3.1.2.4 (Comparison). Let j: M — RM be a quasi-smooth derived enhance-
ment, inducing the perfect obstructlon theory j*: j*Lg,; — L3;. We have the span of

closed immersions RObs(j*) S ML RM. Asi splits (has a retract) while j need not,
the two derived enhancements cannot in general be identified. However we wish to
show an equality of the virtual structure sheaves induced in G-theory. By [MR18a,
Proposition 4.3.2], this is the case.

1.3.2 Comparison of obstruction theories

Let X, Y be classical Artin stacks, with X a (relative) curve, and let M be the stack of
morphisms from X to Y. Then we have:

¢ the canonical obstruction theory as constructed in|example 1.1.2.2.3}

¢ the derived enhancement to the derived mapping stack RMap(X,Y), defined by
right adjointness to the homotopy product.
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We wish to compare the two induced virtual sheaves.

Construction 1.3.2.0.1 (Tangent stack). Let X be a derived Artin stack. We define its tan-
gent stack as TX = RMap(Spec(k[e]), X). The natural inclusion Speck — Spec(k[e])
induces a map TX — X allowing us to view TX as a derived stack over X.

By [TVo08, Proposition 1.4.1.6], if x: Spec A — X is an A-point of X we have

MapaG{/x(Spec A, TX) ~ MapoUaA(Lgc,X, A) ~ MapmmoaA(A, T% ) (1.33)
(which we can of course identify with Mapg .y spec a) (Ospeca, T ). This shows that
the A-points of TX over X are completely determined by the (co)tangent complex.

Lemma 1.3.2.0.2. [MR18a, eq. 4.3.4] Let X, Y be derived Artin stacks. Consider the universal
derived mapping stack diagram

RMap(X,Y) x X

/ \ , (1.34)

RMap(X, ) 9

where T is the projection and ev the evaluation map.
There is a canonical equivalence Tﬁwap(x,y) ~ 7, ev* Ty in Q€oh(RMap(X,Y)).

Proof. We will show that the formula holds at the level of stalks. Let A € ?lg;" and
x¢: Spec A — RMap(X,Y) be an A-point of RMap(X, Y), classifying f: SpecAxX — Y.
We must show that Ty, xy) x, = (70 eV Th)x, = xfr, ev™ Tj.

We apply [construction 1.3.2.0.1/to the derived mapping stack. Notice first that

TRMap(X,Y) =RMap(Speckle], RMap(X,Y))

= RMap(X, RMap(Speckle], ¥)) = RMap(X, TY). (1.35)

Hence the space of A-points of TRMap(X,Y) above RMap(X,Y), that is of liftings
for the left diagram injeq. (1.36)} is by adjunction equivalent to that of liftings in the
right diagram:

TRMap(X,Y) . TY
P l = l . (1.36)
Spec A —— RMap(X,Y) SpecA x X —— Y

Byleq. (1.33)} this means that, assuming X affine (since the tangent complex satisfies
descent)

Mapagﬁoa/\ (A') TITQM(ZP(:X:,%),Xf) = MapDGt/ RMap(X,Y) (Spec A’ T RMQP(:X:) 13 ))
= Mapww (SpecA x X, TY) (1.37)

= Map o4 (spec Axr) ( Ospec At T ).
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Writing p: X x Spec A — Spec A for the projection, we have p*A = Ogpec axx and thus
(by adjunction)

Map 50, (As Thrtap( i) = MaPogon, (A PT ) (1.38)
where we remind that T} ; = *Tj.
The diagram
| / :
SpecA x X —a RMap(X,Y) x X (1.39)
Pl lT[
Spec A ————— RMap(X, Y)

is coherent, so we have T} ; = (x; x 1x)"ev* T} and by base change in the left square
we obtain
PsT ¢ = Palxr x 1x)"ev* Ty = xgrr. ev™ T (1.40)

Finally, we have shown that

Map, oo (A, TRap(x,y) x) = Map, oo (A, (. ev* T3),, ). (1.41)

By the universal property of the colimit, the cotangent complex satisfies the following
descent property: for any A-point x: Spec A — RMap(X,Y) and B-point 3: SpecB —
RMap(X,Y), and any morphism of derived rings A — B over RMap(X, Y), the induced
morphism L., iy o ®%B — L ntap(x,y,p 1S an equivalence in 900 = QCoh(Spec B).
Hence we can proceed by reduction to the affine case and conclude from O

Similarly to the case of remark 1.1.2.2.6| this formula can be recast into the relative
context. Suppose X and Y are defined above a base derived Artin stack B, so that
RMap, (X, Y) also is. We replace the previous diagrams with

X xg RMap,(X,Y) —— Y

ﬂl l (1.42)

RMap,(X,Y) ——— B

to obtain an equivalence TJ?W»% (xy)/p 2 T eV” T3, In particular, in the case Y = Wx B,
where the structure map is the canonical projection to B, we have Ty, (xy)s =
7T, ev™ T5,.

Corollary 1.3.2.0.3. Let C be a (discrete) curve over a discrete algebraic stack B, and let ) be
a discrete algebraic stack over B. The relative perfect obstruction theory

]'*Lfmﬂpg(e,y) /B L;V[ap(B (©Y)/B (1.43)

coincides with that (for a mapping stack from a relative curve) constructed inexample 1.1.2.2.3|

and lremark 1.1.2.2.6,
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Proof. The diagram and its truncation (whose maps are denoted with a “0”) fit
into the commutative diagram

C x3 Map,(C,Y) » € xg RMap,(C,Y)
(1.44)
Map,(€,Y) — > RMapy(C,Y)
\ ! /

By the relative version of |1emma 1. 3.2.0.2} we have j*TJIWaPB(@»H) 5 = J e ev Ty (note
that j* commutes with taking duals, by definition of the structure sheaves in
lample 1.2.2.3.8). The back square is cartesian (as C is 0-truncated), so by the base-
change formula this glves To,.)" ev* T3 5. By the commutativity of the upper triangle,
we finally obtain 715" ev* T} 5 = 70, (ev 0))* T}, = 7o evy T 5, which is exactly the

construction (1.18). O

Remark 1.3.2.0.4. Finally, note also that for any derived enhancement j: M — RM of
a discrete algebraic stack, since the Euler characteristic x»: Go(M) — Go(Speck) = Z
in G-theory is defined as the direct image along the projection to the point, for any
[F] € Go(RM) the diagram

\ a (1.45)

gives X ((G.)7'191) = a.(3.) 7' [F] = (a").3.(G.) 7' 1F] = (a®).[F] = xeo([F]).
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Chapter 2

co-operads and brane actions

2.1 Higher operads

2.1.1 Models for co-operads

There are (at least) two ways of thinking of classical (coloured) operads:

* as a “multicategory” © with a set of colours and “multilinear arrows” from any
given sequence of colours to another colour;

* as its category of operators O, an actual category whose objects are finite se-
quences of colours of O.

Definition 2.1.1.0.1 (Coloured operad). A coloured operad (or symmetric multicat-
egory) O in Get is the data of:

e aset C = C(9) of colours,

¢ foranyn € I'and any collection of colours ¢y, ..., cn,d € C,asethomg(cy,...,cn; d)
of multimorphisms,

e for any colour ¢ € C, a distinguished identity morphism 1. € hom(c;c),

e for any collection of colours (ci,...,¢n), (di1y.oydin)yeeny (Antyevy dnin )y d, a
composition map

hom(cy,...,cn;d) X
hom(d,...,dix;c1) x -+~ x hom(dn,...,dnk.;Cn) (2.1)
— hom(dm, ceny dn,kn; d),
e for any n, any collection ¢y, ..., c,, d of colours and any permutation o € S,, a
morphism o*: hom(cy,...,cn;d) — hom(cen), ..., Com);d)

such that the os form a representation of S,, and the composition law is associative,
unital and S, -equivariant. The commutative diagrams expressing these conditions are
spelled out in[EMo6| Definition 2.1].

25



Example 2.1.1.0.2. Let (U, ®) be a monoidal category. We can then define a coloured
operads whose colours are the objects of U with hom(vy,...,vy;w) =homg(vi®- - ®
v, W). If (U, ®) = (Set, x) is the category of sets with its cartesian product, we also
write Get for the resulting coloured operad.

A multifunctor 7: O — P between two coloured operads consists of a function
C(9D) — C(P) and for any sequence of colors ¢y, ..., cn, d € C(D), amap homy(cy,...,cn;d) —
homy(Fcy,. .., Dcy; Fd) respecting the compositions, identities, and S, -actions ([Weio7,
Definition 1.1.5]).

Construction 2.1.1.0.3 (Category of operators). To a coloured operad O, we associate
its category of operators O®, endowed with a canonical projection to I'. An object of
0% is a family (Oy, ..., Oy) of n (not necessarily different) colours of O, for any (n) € T.
If (Oy,...,05) and (P, ..., Py) are two objects of O®, a morphism from (Oy,...,On)
to (Py,...,Py) consists of amap «: (m) — (n) (to be thought of as selecting the sources
of multimorphisms) and for every i € (n)° a multimorphism from (Oj)jcq-1(5) to Pi.
Composition is given in the obvious way by composition of the selection maps « and
using the composition operation for multimorphisms.

There is a canonical functor O® — T, which at the level of objects maps (Oy,...,0,) —
(n) and at the level of morphisms forgets the multimorphisms and remembers only
the selection map (n) — (m,).

2.1.1.1 oco-operads

Definition 2.1.1.1.1 (Inert and active morphisms). ¢ A morphism f: (m) — (n) in
I is inert if for every i € (n)°, the preimage f~'(i) C (m) has a single element.

* A morphism f: (m) — (n) in I is semi-inert if for every i € (n)°, the preimage
f~1(i) C (m) has at most one element.

* A morphism f: (m) — (n) in T is active if f~'(0) = {0}.

Example 2.1.1.1.2. The morphisms p!': (n) — (1) are inert.

mu

Lemma 2.1.1.1.3. Let Cat)y * be the (non-full) subcategory of the slice category Cat/r whose
objects are the functors P: € — T which satisfy the following conditions:

1. for any inert morphism ¢: (m) — (n) in T and every object C in the fibre of P above
(m), there is an object X® above (n) and a P-cocartesian lift d: X — X® of b;

2. for any (n) € T the functor €y — &, induced by the cocartesian lifts of the p is
essentially surjective;

3. for every morphism ¢: (m) — (M) in T and any X € &€, Y € &y, writing
hom® (X, Y) for the set of arrows X — Y lifting &, composition with cocartesian lifts
Y —Y; of the p?* induces an isomorphism hom®(X,Y) = [T, hom® °? (X, Y,);
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and whose morphisms are the functors above T which send cocartesian lifts of inert morphisms
to cocartesian morphisms. Then the functor O ~~ O%: Op — Cat,r induces an equivalence of
categories with Cat*™.

Proof. Here we simply transpose the proof of [GH15|] to the symmetric context.

Let us first describe some consequences of the axioms for (’:atr/}““. Fix an inert
morphism ¢: (m) — (n). Consider a morphism g: X — Y in the fiber over (m,).
Since X — X is cocartesian, the morphism X % Y — Y® uniquely determines a
morphism g®: X® — Y? lifting 1, in a functorial manner, hence ¢ induces a functor
d)[ﬁ €<m> — Q(n)-

It is easy to see that (—)® factors through Qlat%“lt on objects, i.e. that every category of
operators of a coloured operad satisfy the required conditions (for ¢: (m) — (n) inert
and X = (X3,...,Xy) € D%ﬂ’ the object (Xﬁb, ..., X?) is determined by Xf’ = X149 and
the morphism (Xj,...,X,) — (X?’, ..., X?) is induced by the projections).

We show that it is essentially surjective. Let P: € — T be an object of @atr/}u“. We
construct a coloured operad © . The set of colours of O r is defined as the set of objects
of the fibre &y of F over (1). Let Oy,..., Oy, P be colours of Or. Since €,y — QI?])
is essentially surjective, the family (Oy, ..., O,) is induced by an object C € ¢,. Let
o, (n) — (1) be the map sending 0 to 0 and everything else to 1 (the unique active
map (n) — (1)); we set homg . (Oy,..., Oy; P) :=homg"(C, P).

Consider now a collection of colours Oy 1,...,014,y...,Oxn,, P1,..., P, Q and set
m =), n. Let *: (m) — (k) be the map of T sending any j such that }_,_, ;n; <
j <> i toiand 0 to 0; notice that it is active. Using composition with the lifts of
the pI we can identify (using implicitly the equivalence ¢y = Cy):

hom(xn] ((01,1) ey O],m )) P1) X X hom(xnk ((Ok,h ey Ok,nk); Pk) X hom(xk((Ph ey Pk)) Q)

~ hom®((O11, ..., Oxny); (P, .-+, Pi)) X hom®((Py,..., Py); Q)
(2.2)

and it follows that composition of morphisms in ¢ defines the composition operation
hom(O11,...,01,;P1) X --- x hom(Ox,...,Oxn.; Px) x hom(Py,...,P;Q) in O,
whence we also get the associativity and unitality of composition.

Let o: (n) — (n) be induced by a permutation in S,; in particular it is both active
and inert. An object X ~ (Xj,...,X,) € €4 will be sent by o, to the object X° =
(X7, -y XR) € €y such that XY = p' X = po X = (pl'0)X (it is clear that (—), is
functorial), from which it follows that X{ = X;), hence the S, actions on the sets of
multimorphisms from X.

We have shown that O r is a coloured operad, and it is easy to verify that its category
of operators is indeed isomorphic (over T') to €.

It now remains to check that the functor (—)® is fully faithful. A multifunctor
G: O — P induces a functor G¥: O — P on the categories of operators, clearly
defined over T, and by the above description of the cocartesians lifts of inert morphisms,
the condition of preserving them for G® is equivalent to the condition that G respect
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the sources of multimorpihsms, which is the definition of a multifunctor. Thus (—)®
also does factor through Catl/’}ru“. Conversely, if we have a morphism F: € — D in
Qlat‘}}rult, the decompositions of objects allow us to see that F defines a multifunctor,
which shows fullness of (—)® and in fact determines an inverse operation for its action
on morphisms. Thus (—)® is an equivalence of categories. O

We can now simply adapt the categorical redefinition of coloured operads to the
oo-categorical setting.

Definition 2.1.1.1.4 (co-operad). An co-operad is an co-functor P: O® — T such that:

1. For every inert morphism f: (m) — (n) in T and every object X € OF , there exists

a P-cocartesian lift f: X — X’ of f, so that f induces an co-functor f; : D%’m — D%ﬁ'

2. For X € D%‘m)’ Y e fol), and f: (m) — (n) a morphism in T, let Map. (X, Y) be
the union of the connected components of Map,, (X, Y) mapped to f by P. For
any 1 < i < n, choose a P-cocartesian lift Y — Y; of pI': (n) — (1). Then the
induced map Mapl. (X, Y) = [ ], <, Mapfis (X, ;) is a homotopy equivalence.

3. Forevery Cy,...,C, € D%y there exists X € D%ﬂ and a collection of P-cocartesian
liftts X — C; of the p.

We say that an co-operad is monochromatic if it is equipped with an essentially
surjective oo-functor [0] — D‘?}).

Remark 2.1.1.1.5 (Interpretation). Let O — T be an co-operad. By [Luri2, Remark
2.1.1.15], the functors p}}, induce an equivalence D%ﬂ ~ D%. We call D%n the under-
lying co-category of O, written O. Thus for any X € D%ﬂ we have X; = p}(X) € O,
and we shall write X = X; @ --- @ X,;. The union of the connected components of
the space Map, (X; @ --- @ X, Y) which are mapped to the unique active morph-
ism o, : () — (1) is called the space of multimorphisms from Xj,..., X, to Y. The
composition operation is obtained as in the proof of lemma 2.1.1.1.3]

If O® is monochromatic, it has essentially one single colour C € O. We then denote
O(n) the space of multimorphisms from n copies of C to C. This allows us to treat
monochromatic co-operads similarly to topological operads.

Example 2.1.1.1.6. By [Lur12, Remark 2.1.2.19], a symmetric monoidal co-category is an
oo-operad.

Let O be a classical (coloured) operad. Then the nerve of its category of operators,
with its natural projection, is an co-operad. We obtain the same result by taking the
homotopy coherent nerve of a topological or simplicial operad.

Example 2.1.1.1.7 (The little k-disks operads &7). We define a monochromatic topo-
logical operad & in the following way. For any n € N, the topological space &(n)
is the configuration space of n disjoint k-dimensional disks inside the unit k-sphere.
Composition is given by insertion of disks and forgetting the surrounding one. The
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little k-disks co-operad is the homotopy coherent nerve of its category of operators,
which we call £7.

A direct (and rigorous) construction of a topological category equivalent to £, the
little k-cubes operad, is given as [Lur12, Definition 5.1.0.2].
Remark 2.1.1.1.8. By [Lur12} Corollary 5.1.1.5], the co-operad £& = lién(c‘fg9 — & —
&Y — --+) is equivalent to the commutative co-operad T (and similarly the associative
oo-operad and the A, -operad coincide). This is an example of the difference between
oo-categorical constructions and their presentations: we do not have to differentiate
between “strict” commutativity and lax commutativity (or associativity). In other
words, since we are only working with fibrant objects, there is not need to resolve our
algebraic operads.

Definition 2.1.1.1.9. If O¥ — T is an co-operad, we will say that a morphism f in O
is inert if it is cocartesian and its projection is inert in T.

A morphism f in D% is active if its projection is an active morphism in T

A morphism f in O% is semi-inert if its projection is semi-inert in I' and for any
inert morphism g composable with f in ©%, the composite g o f is inert in O% when its
projection is inert in T

Definition 2.1.1.1.10 (Map of co-operads). ¢ Let O¥ — T and p® — T be two co-
operads. An co-operad map from O% to ¥ is an co-functor above T carrying
inert morphisms in O% to inert morphisms in PB“.

The oco-category of co-operad maps, denoted Alg, (B), is the full sub-oco-category
of Funp (O, PB?) spanned by the co-functors which are maps of co-operads.

We let Op_, denote the co-category of co-operads (though, from the above dis-
cussion, it should be extended to an co-bicategory).

e Let U® be a symmetric monoidal co-category. An O®-algebra in 0¥ is a map of
oo-operads from O% to T®.

Example 2.1.1.1.11. In the spirit of remark 2.1.1.1.5} let us give an explicit description of
a map of monochromatic co-operads. Let O® — T and ® — T' be monochromatic co-
operads with respective colours O and P, and let 7: 9% — PB® be a map of co-operads
between them. Preservation of inert morphisms means that 7 preserves the colour
decompositions and the S,-actions. Since it is defined over T, the functor F sends
the active morphisms of O® to active morphisms in %, hence it determines maps of
spaces O(n) — PB(n) for all n.

Recall the composition map O(n;) x --- x O(ny) x O(k) — O(ng + -+ - + ny), in-
duced by Bi: (n; + - - + 1) — (k), that is by composition homP* (Q®m1++m @k
hom™ (0%, 0) = hom™Px(Q®M++1 ), where oy and By are active. The functor F
will therefore produce coherent squares

O(ny) x -+ x O(n) x O(k) —T— P(ny) x - x P(ny) x P(k)

lo l . (23)

O+ +1ny) > Py + -+ 1)
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2.1.1.2 Quasi-operads

Construction 2.1.1.2.1 (Category of rooted trees). We shall call tree a loop-free non-
empty connected finite (non-planar) graph. A rooted tree is a tree with a distinguished
outer vertex called the output and a (possibly empty) set of outer vertices called the
inputs, where a vertex is called outer if it is only attached to one edge.

Any rooted tree T determines a symmetric coloured operad Q(T), whose colours
are the edges of T. A vertex with output edge d and input edges cy, ..., c, defines an
element in hom(cy, ..., c,; d) and composition is given by grafting of trees (while the
symmetry action is obviously given by permutations of the edges).

The category of trees () is the category whose objects are trees with morphisms
between two trees being the morphisms between the operads they generate. In other
words, Q is the full subcategory of the category of (symmetric) coloured operads
spanned by the operads generated by trees.

A dendroidal object in a category € is a ¢-valued presheaf on (). The category of
dendroidal objects is denoted 0¢ = €2,

Remark 2.1.1.2.2 (Faces and degeneracies). Just as in the simplex category A, the morph-
isms in the tree category () are generated by two classes of elementary morphisms,
which we now describe.

Face maps Let T be a tree with an inner edge e from a vertex v to a vertex w. Write
T/e for the tree obtained by contracting e (and identifying v and w as a unique
vertex u). There is a natural morphism T/e — T, which is the identity on the
unaffected components and sends u to the operadic partial composition w o, v.
This type of morphism is called an inner face map. Let T; denote the subtree
with e as output edge and T, the complementary subtree with e as an input edge;
the face map can be interpreted as factoring through the gluing of T; and T, along
e, which we may write informally as “T; I T,” (since the trees are required to be
connected such “coproducts” will not actually exist in €3, so this form is nothing
but a useful abuse of notation, which can be given meaning by completing to the
(co-)category of presheaves, especially with the Segal condition below).

Let T be a tree with a vertex v that has only one inner edge attached to it (and any
number of outer edges, including possibly zero). Write T/v for the tree obtained
by removing v and its outer edges. There is once again a natural map T/v — T
which is the identity on all elements of T/v. These types of morphisms are called
outer face maps.

There is another special case of outer face maps. Denote T,,, called the corolla
with n leaves, for the tree with one vertex and n + 1 outer edges, the last of
which, representing the output, shall be forgotten. Then we may remove the
unique vertex and obtain the tree I with one edge and no vertex; a face map
I — T, corresponds to the choice of an edge in T,.

Degeneracy maps Let T be a tree containing a vertex v with one ingoing edge e; and
outgoing edge e;. Write T \ v for tree obtained by removing v and joining e; and
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er to a single vertex e. There is then a map T — T \ v which is the identity on
components unaffected by the construction, sends both colours (edges) e; and e¢
to e and sends the vertex v (seen as a multimorphism from e; to ef) to 1.. Such a
morphism is called a degeneracy map.

By [MT10], any morphism in € factors as a composition of degeneracy maps followed
by an isomorphism followed by a composition of face maps.

Definition 2.1.1.2.3 (Boundaries and horns). Let T € () be a tree and ¢: S — T be
a face map. The ¢-face of the representable ()[T] is the sub-dendroidal set of Q[T]
generated by the image of the induced natural transformation Q[¢]. It is denoted
04Q[T].

The boundary 0Q[T] of the representable )[T] is the union of all the faces of Q[T].

The ¢-horn of Q[T] is the sub-dendroidal set of dQ[T] given by the union of all the
faces not equal to 0,Q[T]. The horn is said to be an inner horn if ¢ is an inner face
map.

Definition 2.1.1.2.4 (Quasi-operad). A quasi-operad is a dendroidal set having the
right lifting property for all inner horn inclusions.

Construction 2.1.1.2.5 (Segal conditions for operads). Since any Reedy categroy (see[defin-
lition A.1.2.1.1.1) must be skeletal with no non-trivial automorphism, the category ()
cannot be Reedy. For this reason, [MT10, Part I, Definition 5.3.1] introduces a notion of
generalised Reedy category, relaxing the requirements of a Reedy category to allow
for isomorphisms. It is shown in [MT10, Part I, Theorem 5.4.5] that there is still a
generalised Reedy model structure on the category 9™ of functors from a generalised
Reedy category R to a cofibrantly generated model category 9. In particular[MT10|
Example 5.3.3 (v)], the category () is generalised Reedy, so 991 has an induced model
structure.

Since the category 91 has all colimits, it is tensored over Get, with the tensor or
copower of an object M by a set S given by a coproduct of copies of M indexed by S.
This induces a functor Get — 9, taking copowers of the final object *, which is strong
monoidal for the cartesian monoidal structures (more generally, we could endow 9t
with any monoidal structure and replace * by the unit). This in turn allows us to
view objects of 9Get as objects of 9901, which we will do implicitly. By [MT1o, Part I, §
4.2], there is a closed monoidal structure on 9&et, which the strong monoidal fuctor
SGet — MM also extends to a closed monoidal structure on 99, with internal homs
denoted hom.

Let T € Q be a tree with at least one vertex. The Segal core S[T] of the representable
dendroidal set )[T] is the subobject given by the union of all the corollas in T (found
at the vertices and given by their inputs); it is a coproduct of representables. If T is the
tree with no vertex, we set S[T] = Q[T]. We also define the dendroidal set | as obtained
from the category [0 = 1].

Let 9t be a cofibrantly generated monoidal model category. A dendroidal object X €
090 is said to be a dendroidal Segal object if for any tree T the map hom(Q[T],X) —
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hom(S[T], X) is a generalised Reedy weak equivalence in 29t. We say furthermore
that X is a complete dendroidal Segal object if it is Segal and in addition the map
hom(J, X) — hom({0}, X) = X is a weak equivalence.

When 91 is the category of simplicial sets with the standard Kan—Quillen model
structure (and cartesian closed monoidal structure), we call Segal operad a complete
dendroidal Segal space.

Lemma 2.1.1.2.6. [MT10]

* [MT1o0, Part I, Proposition 8.4.2] There is a model structure on the category of dendroidal
sets whose fibrant objects are exactly the quasi-operads.

® [MT1o0, Part 1, Theorem 5.6.3] There is a model structure on the category of dendroidal
spaces whose fibrant objects are exactly the Segal operads.

* [MT10, Part I, Theorem 5.6.4] These two model categories are Quillen equivalent.

Theorem 2.1.1.2.7. [HHM16, Corollary 2.5.4] The theories of quasi-operads with no nullary
dendrices and of unital co-operads (with no nullary operation, see (definition 2.2.1.4.1) are
equivalent in the following sense: there exist simplicial model categories encoding quasi-operads
and oo-operads, and a zigzag of Quillen equivalences between them.

We also give a result allowing us to speak of higher operads in the more natural
language of simplicial operads.

Proposition 2.1.1.2.8. [CM13, Theorem 8.15] There is a simplicial model structure on the
category of simplicial operads which is Quillen equivalent to the model structure for quasi-
operads on dGet.

2.1.2 Variants
2.1.2.1 Operads in a stack co-topos

Let T = &b (€) be a stack co-topos. We wish to study operads in T. Note that if € is the
point category with T its unique topology, so that T = & is the category of spaces, then
an operad in ¥ will be an co-operad as described above. Further, by theorem 2.1.1.2.7]
and lemma 2.1.1.2.6, co-operads can be modelled as Segal operads, which are functors
Q% — & = T satisfying the Segal condition.

Definition 2.1.2.1.1 (T-operad). The co-category of operads in the stack co-topos T is
the co-category
Opoo(T) = Fun & (QP, T) (2.4)

of co-functors from (the nerve of) the category of trees to T satisfying the Segal condi-
tion.

Proposition 2.1.2.1.2. The datum of an operad in T = &b (<) is equivalent to that of an
Op . -valued sheaf on (€, T).
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Proof. We have the chain of equivalences

Fun®# (QP, T) ~ Fun®™E (QP, Fun"(CF, B))
~ Fun>#T(QP x €P, &) (2.5)
~ Fun(€P, Fun>#(QP, 6)) = &b (¢, Op,,).

]

Corollary 2.1.2.1.3. The co-category of operads in T is equivalent to that of limit-preserving
oo-functors from TP to Op .

Proof. By the exactness properties of co-categories of presheaves[Lurog, Theorem
5.1.5.6] extended to sheaves by [Lurog, Proposition 5.5.4.20] we have

Fun(€P, Op ) ~ Fun®™(Sh,(€P), Op,.) ~ Fun"™ (TP, Op.), (2.6)
where the last equivalence is by [Lurog, Proposition 5.2.6.2]. O

We now restrict our attention exclusively to sheaves of co-operads on € taking values
in unital monochromatic co-operads, i.e. sheaves of co-operads O® on (€, T) such that
for every Z € € the co-operad O®(C) is monochromatic and unital, with colour C;.

Let us give an explicit description of such operads. Let 0¥ € &h (€, Op_ ) be a
sheaf of unital monochromatic co-operads, and write 05 € Fun®#(Q°P, ¥) for the
corresponding complete dendroidal Segal object of T. For every tree T € (), we obtain
a sheaf of co-groupoids 05 (T) on €.

In particular, the corolla with n leaves T, gives the sheaf O, = 0§ (T,) which,
by the Segal condition, sends Z € ¢ to Mapo®(z)act(C§9“, Cz) = 0%(Z)(n). By the
Yoneda lemma after embedding ¥ in the larger co-category PSh(¢), this space is
also identified with Mapys o) (Z,0,). Using this functorial identification and the fact
PESH(C) is generated by representables under colimits, the composition operations
0% (=) (k) x O®(=) (1) x - - - x O®(—) (k) — O®(—) (i1 + - - +1x) furnish maps Oy x Oy, x
-+ x O3, — Oy, 4...41, between the underlying presheaves (which, since T — ‘B&ShH(¢) is
fully faithful, are maps of sheaves), showing that we can think of the co-operad 0% in
% using the classical language of operads enriched in the co-topos %.

2.1.2.2 Graded oco-operads

Let B be a monoid (in sets) with indecomposable zero (that is, if 3; + 3, = 0 then

B1=P2=0).
Lemma 2.1.2.2.1. [MR184, Proposition 2.3.2] Let T® be the category whose
objects are those of T,

morphisms from (m) to (n) are pairs (f, 3) of an arrow f: (m) — (n) in T and a function
B: (n)°— B,
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composition of (f,): (m) — (n) and (g,v): (n) — (p)is (gof,y o P) whereyo
B: (p)° — B is given by

A() g (i) =0

A(l) + Z]‘eg% (1) B(J) EZSE. (27)

(YoB)i) = {

The co-functor N(I®) — N(T) induced by forgetting the B-grading is an co-operad.

Definition 2.1.2.2.2 (Graded co-operad). A B-graded co-operad is a map of co-operads
O® — T*.

2.2 Brane actions

2.2.1 Algebras in correspondances
2.2.1.1 Cobordisms in the operad &5’

As motivation to understand the brane action, we treat the example of the little 2-disks
oo-operad &5, whose space of n-ary operations is the configuration space of n disjoint
disks in the unit disk. In particular, observe the space &£,(2) is homotopy equivalent to
the circle S'.

For simplicity, we will consider &, as an operad in the category & of spaces, whose
monoidal structure is given by the cartesian product. Hence an &,-algebra X in &~ is
given by the data of, for each o € &;(n), a continuous map X" — X.

Recall the following:

Definition 2.2.1.1.1 (Cobordism). Let X, Y be smooth oriented (k—1)-manifolds without
boundary. A cobordism from X to Y is an oriented k-manifold X with boundary such
that 90X = X LY, where X means X with the opposite orientation.

Let 0 € &(n) be a configuration of n disks. Then o defines a cobordism from
[1,.S'to S', as a “pair of pants with n legs”. Indeed, we join the n copies of S' to
the boundaries of the n little disks determined by o, and we join the target S' to the
boundary of the unit disk, to obtain the required cobordism.

Since the disk is contractible, the space of insertions of an additional disk into the
configuration o is homotopy equivalent to o itself (that is, to the unit disk with the
little disks removed). This is equivalently the space of configurations ¢’ of n + 1 disks
such that forgetting the last disk gives back o, denoted Ext(Z). Finally, we note that
this space is also homotopy equivalent to a wedge \/™ S' of n circles.

Let X be a topological space. Applying the functor Map(—, X) (which turns cop-
roducts to products) to the cobordism constructed above we obtain a structure of
&-algebra on the loop space Map(S', X).
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2.2.1.2 Categories of correspondences

Let ¢ be a category with finite limits. We can form a 2-category Span(<) of correspond-
ences or spans in €. Its objects are the objects of €. A morphism for X to Y, written
X --»Y, is a span with extremities X and Y, that is a diagram

VA
, (2.8)
X / \ Y

with composition given by pullbacks of the respective vertices. A 2-morphism of spans
is a morphism of their vertices above both the source and the target of the span. There
is an obvious functor ¢ — Gpan(¢) inducing the identity on object and sending a
morphism X — Y to the span X = X — Y with vertex X, and there is another obvious
functor €°P — Gpan(€) sending X « Y to the span X + Y =Y with vertex Y.

Property 2.2.1.2.1. For any functor F: €°P — © to a 2-category © such that
* forany f: X — Y in €, the 1-morphism Ff: FY — FX has a right adjoint f,: FX —

FYin®, and
* for every cartesian square
X ¥,y
f’l lf / (2.9)
X/ T> Y,

the canonical base-change 2-morphism F(u) o f, = (f'),. o F(u') is invertible,
then F extends to a functor of 2-categories F: Gpan(€) - Dina unique way.

Proof. First let us notice that ¢€°¢ — Gpan(<) verifies these properties, since spans
define morphisms in either direction, and by associativity of pullbacks.

We define F to act as F on objects, and on morphisms to send a span X 5y
to g. o F(f). By the base-change property of F this is well-defined with regard to
composition.

Let G: Gpan(€) — D be another extension of F through Gpan(¢). By definition, G

and F have the same effect on objects. Let now X <~ Z% Ybea morphism X --» Yin
Gpan(€). We now observe that the span factors as

Lxz;2="71

7 ﬂz/ \ﬂz,x 7 (2.10)
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Since G extends F, we have that G(X L z= Z) = F(f), and we noticed above that
Z =2 % Yisadjointto Y <& Z = Z, mapped by G to F(g). We have thus recovered the
behaviour of F on morphisms. [

An oco-bicategorical version of the bicategory of spans is described in [GR17, Chapter
V.1], with a categorification of the previous property proved as [GR1y, V.1, Theorem
3.2.2]. We will not need it, as we are not interested in co-functors from the co-bicategory
of spans but in co-functors to its maximal co-category.

The decategorification (i.e. the maximal category) of Gpan(€) is denoted (<)

We also recall (see lexample A.1.1.2.7| for the oco-categorical version) the twisted
arrows category of a category ©, whose objects are arrows of © and whose morphisms
from f to g are factorisations of f through g, that is commutative squares

fl lg . (2.11)

.

corr

Property 2.2.1.2.2. Forany category D, there is an equivalence between the category of functors
D — (€)° and the category of functors F: Two(D) — € such that for any composable
morphisms f: X = Y,g: Y — Zin ®, the object F(gf) is isomorphic to F(g) X z,) F(f).

Proof. Let F: T (D) — € be as above. For any X € ©, we let 7'(X) = F(1x). Note
that a twisted morphism from 1y to 1y is an isomorphism X = Y. For any f: X — Y in
D, set F'(f): F(1x) --» F(Ly) to be the span with vertex F(f) whose arrows are given
by the tautological factorisations of f through the identities:

F(f) X —— X X 5y
F(*) F (%) with * = £ 1x and * x = lf 1y (2'12)
Fy) F(1y) Y —— X Y=Y

This is functorial by the property required of F, and the operation (—)" is clearly an
equivalence of categories. O

An oo-categorical generalisation of this construction is exposed in [Ras14]. We have
a categorification of the previous property.

Proposition 2.2.1.2.3. [Ras14, § 20.9] Let € be an co-category with fiber products and ©
an oco-category. The co-category of co-functors ©® — (€)™ is canonically equivalent to the

oo-category of co-functors F: Tw (D) — & such that for every 2-simplex X LyS5zinD,
the morphism F(gf) — F(f) x ) F(g) is an equivalence in .

This can in fact be taken as a definition of (¢)“"": the co-functor (e)" is a sub-co-
functor of the right adjoint to the co-functor Tto(—).



Finally, we show that there is a monoidal version of the above. Since € has finite limits,
it admits the cartesian monoidal structure ¢*. This induces a symmetric monoidal
structure on (€)“", which we denote (€*)“" (it is not given by the cartesian products
in (€)“"). Now let ©® be a symmetric monoidal co-category, that is a commutative
monoid in €at’,. Then by[Lur12, Example 5.2.2.23], the morphism Tto(D) — D x DP
admits a structure of commutative monoid in the co-category of pairings exhibiting a
symmetric monoidal structure on Tto(®), which we denote T (D)®.

Corollary 2.2.1.2.4. [MR18a, Corollary 2.1.3] For any oo-category € admitting finite limits
and any symmetric monoidal co-category D%, the co-groupoid of monoidal co-functors D% —
(€X)“" is canonically equivalent to the co-groupoid of monoidal co-functors F: Tw(D)® —

¢ such that for any composable sequence X LY%zinD, Fgf) ~ Flg) X r(1y) F ().

Proof. The co-functor ()" : Cat™* — CatX commutes with limits and thus sends
commutative monoids to commutative monoids, so the (sub-)adjunction Tto(—)
(—)“" passes to commutative monoid objects. O

Remark 2.2.1.2.5 (Cospans). We can similarly define co-bicategories of cospans and oco-
categories of cocorrespondences in an co-category ¢, which coincide with respectively
Span(€°P) and (€°P)“". The symmetric monoidal structure (€1)“*" = (C"PXOP)COrr is
now given by coproducts in €.

Example 2.2.1.2.6 (Endomorphisms operad). Let C be an object of €. A correspondence
C" --» Cin Map 4 r (C™, C) is equivalently given by an object of €,cn+1, an object of €
over C™' (and, trivially, over the final object). Write €[C](n) := Jso (€ cnr1).

If we have an object A — C""! and another B — C™', then A xc B — C™™
(using the morphism from A to any factor C and the one from B to the final (m + 1th)
factor) gives an object of &[C](n + m — 1), providing a structure of monochromatic
oo-operad on €[C]. (Note that there ought to be in fact a structure of cyclic co-operad,
cf.|section 3.1.2.2|)

The oo-operad €[C]® is a sub-co-operad of the symmetric monoidal co-category
(€*)™. Analgebra in (€*)“" over a monochromatic co-operad O with colour O such
that the image of O is C can be seen equivalently as a map of co-operads O® — €[C]®.

2.2.1.3 Lax morphisms and categorical operads

Construction 2.2.1.3.1 (First formulation of lax morphisms). Suppose O® and L®
are two monochromatic co-operads in an oco-bicategory: for example we can take
two oo-operads and consider their spaces of operations as objects in the bicategory
of spaces. We will not pursue in detail the language of (oo, 2)-categories (though
see |construction A.1.2.3.7); however working with the co-bicategory of spans in an
oo-category € will allow us to describe 2-morphisms in terms of morphisms of €.

We wish to consider a lax map of co-operads F: O ~+ L% between them. The
coherent diagram of example 2.1.1.1.11} written in terms of partial compositions
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to simplify, should then be reinterpreted as

Fny xFn,
O(ny) x O(ny) ----------3 > P(na) x P(ny)
e
Oy +mny,—1) TEIIT? Py +ny,—1)

where the 2-arrow between the composites is not necessarily invertible.

We will give a more rigorous description of a lax morphism in the case where
P = €[X] is the endomorphisms operad of a space X (seen this time in spans instead of
correspondences), or more generally an object in a stack co-topos.

Definition 2.2.1.3.2 (Categorical operad). [Toé13] A categorical co-operad in spaces
is a presheaf of co-categories on () satisfying the Segal conditions.

Let T be a stack oo-topos. The oco-category CatOp(%) of categorical co-operads in
T is Fun"™ (TP, Fun> (QP, Cat,,)), the co-category of limit-preserving co-functors
from T to the oo-category of categorical operads.

By cartesian closure, the co-category of categorical co-operads in ¥ is equivalent to
Sunhm’segal(‘l"P x Q%P Cat,). Applying the Grothendieck construction, an object of this
oo-category can also be seen as a category over T x ()°?, whose structure morphism
is a cocartesian fibration in the first variable (over ¥) and a cartesian fibration in the
second (over 0°P), that is a bifibration in the terminology of [Lurog, Definition 2.4.7.2].

Example 2.2.1.3.3. Let U® be a symmetric monoidal co-bicategory (which we have not
defined, but one may think of the cartesian monoidal structure on an oco-bicategory of
spans). This defines a categorical co-operad in the following fashion. To a corolla with
n leaves, we associate the coproduct [ [, . x. y)egn+1 Pap(X; ®@- - - @ Xy, Y) of mapping
oo-categories. On a general tree T, we define the action of the categorical operad by
decomposing T into the corollas of its Segal core, and impose the Segal condition.

In particular, the co-bicategory of spans in an co-category ¢ has a monoidal structure
similar to that on (€*)“", so we can present it more simply by a categorical co-operad.

Remark 2.2.1.3.4. Let 0¥: TP x Q% — Cat,, be a categorical co-operad in T. For the
purposes of this paragraph, we shall omit all consideration of the fibration over ¥ in its
Grothendieck construction f 0%, and only consider the cocartesian fibration over Q°°,
which we recast in this paragraph as a cartesian fibration over (). Let ¢: = — Y be a
cartesian edge in the Grothendieck construction whose projection to €} is homotopic
to the inclusion of a corolla T, of the Segal core of a tree T. Let g: — T,, be a morphism
in @ and n: ¥ — V¥ a lift of the composite of g by T, — T; since ¢ is cartesian there
exists a unique lift y of g making the triangle commute, i.e. such that ¢y =n. If we
now consider the union of these morphisms over the set of all corollas of T (formally
corresponding to its Segal core), we obtain : the cartesian property expresses exactly
the Segal condition.



Construction 2.2.1.3.5. Consider now a morphism of categorical co-operads F¥: 0% —
P®, and the associated morphism of bifibrations F: [ 0% — [P¥ over T x Q. By
definition it sends Q°P-cocartesian morphisms in [ O® to Q°P-cocartesian morphisms
in [ P%. Let f: Ty — “To LI T,,” be a face map in Q, giving (by the Segal condition)
a partial composition f*: O®(—)(n) x 0®(—)(m) — 0¥(—)(n + m — 1) in the sheaf of
categorical co-operads O%(—) (f* is a natural transformation of sheaves of co-categories,
whose components are thus co-functors). The property, for a lift ¢ of f°P, of being
cocartesian, corresponds to the essential uniqueness of iterated compositions, that is
the homotopy associativity. Since 0¥ — P® is a morphism of co-operads, the corres-
ponding f 0% — ffP® is a morphism of cocartesian fibrations over °?, and sends ¢
to a cocartesian morphism in [ P¥.

We now fix an object of T to work over, so as to only remember the fibration over
Q°P. Let us relax this condition, and suppose ¢: = — V¥ (with = over T, 1n—1 and ¥ over
the contraction “T,, I T,,,”) is a cocartesian lift that is not sent to a cocartesian edge: we
require that [ 0% — [ P® be defined over Q (so ¢ is still sent to a lift of f in [ P?),
but not a morphism of fibrations. There is a cocartesian lift cT): F(Z)— Y of fin [P®
(which differs from the image of ¢ by F).

Let us now compare the two branches in the square defining a morphism of operads.
Then operadic composition in O% (given for = by direct image to ¥) followed by applic-
ation of ¥ sends = to F(¥). Now F sends ¢ to F(¢): F(Z) — F(¥). There is also
the cocartesian cl) F(=Z) = Y, and both F (b) and cl) are lifts of f (or 1.1, 11 T © fo). It
follows that F(¢) factors (in an essentially unique way) as @= o d), with Go~ ‘P — F(V¥)
lifting 1.7, 117,,~ (that is, by the Segal condition, a morphism in P(n) x P(m)). This
@z is the component of the 2-morphism making the diagram of oo-categories only
2-coherent:

m) TF gy I
v

l / lf*
On4+m-—1) m?n—i—m—ﬂ \

We have now motivated the following definition.

Definition 2.2.1.3.6 (Lax morphism of categorical operads). Let T = &h (<), and let
O® and P® be categorical co-operads in T. A lax morphism from 0% to P is an oco-
functor [ 0% — [ P® over ¥ x Q° sending T-cartesian arrows in [ O® to T-cartesian
arrows in [ P®.

In the terminology of [Ioé13], this is called a very lax morphism of categorical
oo-operads.

Notice that for classical co-operads, the Grothendieck construction produces fibra-
tions in spaces over Q°P, where all morphisms are cocartesian, so the lax morphisms
are exactly the morphisms of co-operads.
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Example 2.2.1.3.7 (Endomorphisms in correspondences). In the co-bicategory of spans,
the 2-coherent diagram is written explicitly as the fully (homotopy) commutative
diagram

O(ny) x O(ny) < VAN, > P(n) x P(ny)

A T A
—lh

Zn XPZE e ZE

/ . (215)

ZW — ZW ons

-
v ~

On;+n,—1) < Zs > Py +ny, — 1)

Suppose that O% and B® are both simply the symmetric monoidal co-bicategory
Gpan(®*) itself. Seeing them as categorical co-operads as in fexample 2.2.1.3.3] this
diagram should be encoded in the datum of a lax morphism of categorical operads.
The discussion preceding the|definition 2.2.1.3.6|then provides the required morphism

Cn] yn2

2.2.1.4 Coherent co-operads

Definition 2.2.1.4.1.  ® An oco-operad O% — T is unital if O® is pointed, if and only
if for each object X € O of the underlying oco-category the space Map((), X) is
contractible (here () lies above (0) € T').

e An oo-operad O% — T is reduced if it is unital and its underlying co-category O
is an essentially trivial co-groupoid (contractible Kan complex).

Remark 2.2.1.4.2. e A monochromatic co-operad O is unital if and only if O(0) is
contractible.

¢ A reduced oo-operad is necessarily monochromatic.

Definition 2.2.1.4.3 (Extensions of an active morphism). Let Q: O% — T be a unital co-
operad. Let 0: O — P be an active morphism in O%, also seen as an edge [o]: [1] — O®.
The oo-category Ext(o) of extensions of o is the full subcategory of Fun([1],0%),
spanned by the diagrams

Ul lﬁ (2.16)

such that:

1. gis an equivalence;
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2. f is semi-inert (see|definition 2.1.1.1.9) and Q(f) is an inclusion (m) := Q(0) —
(m + 1) which misses a single element i of (m + 1);

3. ot is active.

This definition is generalised combinatorially for a composable sequence of active
morphisms as [Lur12, Definition 3.3.1.4]. It expresses the following. Write O = O; @

-+ @ On. Then an extension of the multimorphism o is given by a colour O € © and a
multimorphism 0 fromO; @& --- 401 0B O0; & --- & O, to PT ~ P, extending o
(up to equivalence).

Remark 2.2.1.4.4 (Extensions of a monochromatic multimorphism). Let O be a unital
monochromatic co-operad with colour C. Let 0 € O(n) = Mapo®’act(C &---aCC)
be an active morphism. We define the space of extensions of o as the homotopy
fibre product Ext(c) = = xg(n) O(n + 1) where the map * — O(n) selects o and
O(n+1) — O(n) is the map forgetting the last input (remember also that O(0) =~ ).

Ifo e Map,. lcoen C@m) ~ D( )™ corresponds to the family (o1, ..., oy ), with
0; € O(n), then we have Ext(o) = [ [, Ext(oy).

Remark 2.2.1.4.5. Suppose O(1 ) ~ {1 ¢}is contractible. We then have

EXt(]lc)

9O(2)
l i l . (2.17)

¥ =——= O(1) ={lc}

Definition 2.2.1.4.6 (Coherent co-operad). Let O® be a monochromatic co-operad with
colour C. We say D% is coherent if it is reduced and for every 0 € O(n)™,t € O(m)
composable, the square

Ext(1cem) — Ext(T)

l . l (2.18)

Ext(0) —— Ext(too0)

is homotopy cocartesian.

2.2.2 Construction of the brane actions
2.2.2.1 Brane action in spaces

Lemma 2.2.2.1.1. [[Luri2, Proposition 2.2.4.9] The forgetful functor seeing a symmetric
monoidal oo-category as an co-operad admits a left adjoint given by D® rs D9 xp Act(T)
where Act(T) denotes the full subcategory of the oo-category Fun([1],T) of mophisms in T
spanned by the active morphisms (and T is zdentzﬁed with Fun([0],T)), zmd where the structure
fibration is induced by evaluation at {1} C [1]. This symmetric monoidal co-category is called
the monoidal envelope of O% and denoted Qinn®(§3)
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Remark 2.2.2.1.2. An object of QEnn(D)(?m> can be seen as a pair (C, f) of an object C =

(Ci@-- @ Cyn) € O% and an active morphism f: (n) — (m) in I'. In particular, when
m = 1, there is a single active morphism from (n) to (1), so the underlying category
Eno(O) = Eno(D){], has as objects those of O and as morphisms the active morphisms
of O%. It follows that morphisms of the (symmetric monoidal) co-category Env(O)®
are given by families of multimorphisms of the co-operad O%.
An object of the induced symmetric monoidal twisted arrows co-category Tto(€Env(9))®

is a family ((n), (o3: Xi — Yi)ic(nyo) of n active morphisms of O (n indexing the fibre),
which as above we can see as a family of multimorphisms. A morphism is a twisted

arrow
(DB fi,5);
Xiiempe —— (Aj)jeqmye

(Ui)ie(n)ol l(’fj)quo (2-19)
(Yi)iemye W (Bj)je(myo
where the @ is to be interpreted as the concatenation of multimorphisms (considering
the family (Z;); as the object (P, Z;), and where (P, fi; (resp. €D; gi;) is a multimorphism
from €, X to A; (resp. from €P; B; to Y;).

Theorem 2.2.2.1.3 (Lax brane action). [Toé13, Theorem 3.1] Let O% be a reduced (mono-
chromatic) operad with colour O. The space of binary operations O(2) has a structure of lax
O®-algebra in cocorrespondences: there is a lax map of co-operads B: O% ~~ €[O(2)]%, that is
B: 9% ~ (&) sending O to O(2).

Theorem 2.2.2.1.4 (Brane action). [10é13, Proposition 3.5/[MR18a, Theorem 2.1.7] The lax
brane action is a map of co-operads if and only if O% is coherent.

Strategy of the proof. Let O% be a coherent co-operad. We wish to construct a (non-lax,
eventually) map of co-operads O¢ — (61)“" sending the unique colour of 9% to
the space ©(2), which be the universal property of the free construction is equivalent
to a symmetric monoidal functor €np® (D) — (&) = (gop* )",

But we also have the left adjoint to (—*)“"" given informally by

{2° L ()7} = {Tw(D)® 2 e | F(s's) = F(s) X1, f(s)} (2.20)
where F(s: d — d') = F(s) € obj €.

So we are reduced to constructing a functor Tto(Env(O))® — BP satisfying the
above conditions and defining a monoidal co-functor to the cartesian structure on &°P,
which by the Grothendieck construction is equivalent to a fibred category in spaces
over Tro(Env(O))® respecting conditions. O

Construction 2.2.2.1.5 (Classifying fibration). We shall now define an co-category over
Tro(Env(O))® which will then be shown to be a cartesian fibration (in co-groupoids).
Consider the co-functor

s = evo: Fun ([1], T (Env®(9))) — Two(Eno(D))®, (2.21)

and let also
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* pe: Env®(O) — T be the cocartesian fibration defining the symmetric monoidal
structure for the monoidal envelope ;

* p: To(Env(O))® — T be the cocartesian fibration defining the symmetric mon-
oidal structure for its twisted arrows co-category;

* p =7pcevy: To(Enu(D))® — T (where evy computes the source of an object of
the twisted arrows category seen as a morphism of the base category; it is not
the same evy as s);

* po: O¥ — T the co-functor defining the operad structure on O¥.
By [Lurog, Corollary 2.4.7.11] followed with [Lurog, Lemma 2.4.7.5], s is a cartesian
tibration. We define the quasi-category BO as the 2-full (but not full) sub-oco-category

of the quasi-category Fun (A', ‘Zm((’fnn(D)))® of twisted edges of Env®(9) (recall the
description of Tro(Env(O))® from fremark 2.2.2.1.2) whose:

objects are twisted morphisms p-over the active map (n) — (1):

@i fi
(Xi)iemye —— A

(O_i)ie<n)0l lzs (2.22)

(Yi)i€<n>° <(QT B

such that (notice the similarity with|detinition 2.2.1.4.3):

1. the map (gi); is an equivalence;

2. the active map @, fi: @, Xi — A is semi-inert in O% and lifts one of the
maps (m) = p, (P, Xi) — (m + 1) corresponding to an injection missing a
single element of (m + 1);

(D fis(gi)i)
e

morphisms are given by: a morphism from the twisted arrow o = (03); d

(B; a5,(b;)5)

to T = (7); € mapped by s over t: 0 — Tis a commutative square of

twisted arrows
Ly

) M)

)
(B fi)(gi)i)]\
(@)

\
7.

((@i t%i)j»(@i “i»i)i> ¢
(223)
satisfying the following property: the square above induces a diagram
A : > U
b ﬂT TEBj qj (2.24)
(Xi)ie(n>° = ((Xk)ked)*‘ (j))]-6<m>o - (S)))e< )

(@i ti,j)j
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with the naming as e: U — Vand 7;: S; — Tj,j € (m)° (and notations for ¢ and
b exactly as in the description of objects), and as follows t;;: X; — S;, ui;: T, = Y;
andr: A — U, s: V — B. Remember that, by the above definition of the objects
of BO, the map P, f; lifts the inclusion of all points but one of p,(A). Then we
require that the map p,(r) sends this missing point to the unique point of p,(U)

missed by p, (€D, o).

This makes it so that the fibre over (o;); is its space of extensions [ [; Ext(o3).

Proof (of [fheorem 2.2.2.1.3). Let t: BO C Fun([1], Tro(Env(9D))®) > Tro(Env(9))® be
the restriction of the cartesian fibration s along the inclusion of BO. We must show
that 7 is a cartesian fibration. It is enough (since the space of extensions of several
morphisms is the coproduct of the individual spaces) to verify the lift property for a
“family” in T (Env(O))® consisting of a single multimorphism (or active morphism).

Let o = (07: Xy —= Y1),T = (11: S1 — T;) be objects of Tw(&Env(O))¥, that is active
morphisms of O%, and lett = (t;: X3 — S;,w;: Ty — Y;): 0 — T be a twisted arrow
between them. Recall that, by construction, the fibre of 7t over 1 is the space of extensions
Ext(t). To simplify notations, for all extensions will replace the equivalence by the
identity and omit it.

Consider then an extension " = (19: S; — S{,1,7:S{ — T;) of T. Since s is a
cartesian fibration, there must then exist a twisted arrow o™ = (07: X; — X{,07: X —
Y1, 071 Y] = Y;) factoring o and an s-cartesian lift of t (by a coherent square of twisted
arrows) between them:

X7 > ST
N + N
(o) /
\ T

o9 lo'/] l]lTl T4 (2'25)

t

But [Lurog, Lemma 2.4.7.5] implies that the morphism of twisted arrows is sent by the
target functor ev; to an equivalence (between 0" and 1) in T (Env(O))®. As we have
taken X; (and Y;) to consist of a single object of O®, we may restrict 0 to an extension
of o, which we denote 0° = (o7: X; — X{% o} o O—T|XTO : X% = Y;) (where X{%is a
subobject of X| lying po-above p,(X;) +1 €.

We now check that the map from this restricted extension is m-cartesian in B9O.
Let (a;: U; — Xi5,b1: Yy — Vi) be a twisted map from another active morphism
A= (A: U — Vi) too. Letalso AT = (A7: U; — U, AT : U — V;) be an extension
of A, and r = (r: U — S{) a morphism from A" to t" in BO whose projection is
homotopic (in ‘Zm(@inn(D))%) to the composite (t;,u) o (a;,b;). Since 0" — t" is
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s-cartesian, there is an essentially unique filling A* — o™. Finally, we see that the space
of submorphims factoring through o and satisfying the condition needed to define a
morphism in BO is contractible.

Since 7 has been shown to be a cartesian fibration in spaces, it defines an co-functor
T (Env(O))® — &°P. We now need to ensure that it sends the monoidal structure of
Tro(Env(O))® to the cartesian monoidal structure of ¢&°P.

Definition 2.2.2.1.6. Let U¥ — T be an co-operad. A lax cartesian structure on Y%
in an co-category © is an oo-functor C: ¥ — © such that for any object X of ‘U%,
written as X; @ - - - @& X,,, the canonical maps C(X) — C(X;) exhibit C(X) as a product of
the C(Xl) in®.

We say furthermore that C is a weak cartesian structure if U® is a symmetric mon-
oidal co-category and, for any cocartesian active morphism f: X — Y covering the
active morphism (n) — (1), the morphism C(f) is an equivalence in ®.

The co-category of weak cartesian structures on U% in ® is the full sub-co-category
of Fun(Y¥, D) spanned by the weak cartesian structures.

A symmetric monoidal structure 0% on an co-category U is said to be cartesian if its
unit object is final in *J and for any pair of objects C, D the induced maps C®D — C,D
exhibit C ® D as a product C x D in ¥. Such a structure is constructed and seen to
be weak cartesian in [Lur12, Proposition 2.4.1.5], and it is shown in [Lur12, Corollary
2.1.4.8] to be unique up to monoidal equivalence whose restriction to 2 is homotopic
to the identity. We shall write this structure as 0*.

Then, according to [Lur12, Proposition 2.4.1.6], if % is a symmetric monoidal co-
category and © is an co-category admitting finite products, there is an equivalence
between the co-category of cartesian structures on U® in ® and the co-category of
monoidal co-functors from U® to D*.

We thus need to check that the co-functor JP] 7t associated to 7t is a weak cartesian
structure. But remember that the fibre of 7 above an active morphism o, that is the
value of f_1 7 at o, is the space Ext(o), and that for a family of active morphisms (o;);
we have Ext(®;0:) = [ [, Ext(0;). The product in &P is given by the coproduct in &, so
r] 7t is a lax cartesian structure. The same property of extensions of families of active
morphisms explains why a map of extension spaces covering the active map (n) — (1)

. : : -1 .
will be an equivalence of co-groupoids, so that [~ 7tis even a weak cartesian structure
as required. O

Proof (of [theorem 2.2.2.1.4). In order for theorem 2.2.2.1.3|to define a morphism of oco-
operads, by [proposition 2.2.1.2.3} the monoidal co-functor Tt (Env(9))® — S°P must
send any composite gf to the fibred product of the images of f: X = Yand g: Y — Z
over 1y. But the objects of Tto(Env(D))® are families of active morphisms of D%, so
this condition is exactly the coherence condition for O®. O

Remark 2.2.2.1.7. Let 0 € O(n) be given, with O® coherent. Then the morphism of
oo-operads provides a cocorrespondence between [ [ O(2) and O(2), where we recall
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that O(2) ~ Ext(1¢). The cocorrespondence is in fact given by

H Ext(1c) — Ext(o) « Ext(1c), (2.26)

where C is the colour of O%. Indeed, we see from the proof of property 2.2.1.2.2|that
the associated co-functor ¢nv(9)® — <®H)cocorr sends an object C*" to the fibre of
mover lcen, which is [ [, Ext(1¢), and a morphism o € Map(C®", C) to the cospan
mentioned above.

Notice that this diagram can easily be identified with the pullback of the relative
cocorrespondence

[[,O92)xOM) — OMm+1) +—— O(2) x O(n)

\ l / (2.27)

O(n)

along * 5 O(n).

This formulation allows us to see that the coherence condition for [theorem 2.2.2.1.4
is indeed identical to the condition of being of configuration type of [Toé13, Proposition
3.5], which was expressed as the following diagram being homotopy cartesian:

On) x O(m—+ 1)D(n)XD%)><D(m)D(n+ 1 x9O(m) —— On+m)
4.7 J (2.28)
On) x O(m) » On+m—1)

where the horizontal morphisms are induced by partial compositions and the vertical
morphisms are induced by forgetting the last input (and the arrows defining the
coproduct are also partial compositions). Taking the fibre product with a pair of active

morphisms x N O(n) x O(n) we obtain the square

Ext(o) D%) Ext(t) —— Ext(t o; 0)

l 4.7 J (2.29)

{(0,1)} ————— {1010}

and we recover the coherence condition Ext(t o; 0) = Ext(0) Lgx(1) Ext(T).

Corollary 2.2.2.1.8. Let X € & be a space and O be a coherent reduced co-operad. Define
the moduli space of O%-branes in X as Boe(X) = Map(9(2),X). Then Bos(X) has a
structure of O®-algebra in correspondences.
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Proof. The presheaf represented by X gives an co-functor Map(—, X): &°¢ — &, which
turns coproducts into products, and thus a monoidal co-functor &P — &*, which
also passes to correspondences (as it sends pushforwards to pullbacks). By composing
with the brane action for O%, we obtain a morphism of operads O® — (&>)“" sending
the colour of D% to the space Boe (X). O

2.2.2.2 Brane action in an oco-topos

Combining remark 2.2.2.1.7|with the discussion at the end of |section 2.1.2.1, a mono-
chromatic co-operad O in an oco-topos T = Sh(€) is coherent (that is, sends any
object of € to a coherent co-operad) if and only if the square

on X Om—H 1T On+1 X Om — On—i—m

Onx02x0O0m

| 2.7 l (2:30)

on X om > On+m—1

is a homotopy cartesian square in <.

For the rest of the section, we operate under the assumption that for every Z € ¢,
the co-operad 0% (Z) is reduced with unique colour C;.

For every object Z € €, |paragraph 2.2.2.1.3| provides a lax brane action O®(Z) ~~
(&°r™) % which by|theorem 2.2.2.1.4|is amorphism of co-operads if and only if 0¥(Z)
is coherent. To obtain a brane action on O, we thus need to study the compatibilities
between these brane actions in spaces.

Lemma 2.2.2.2.1 (Functoriality of brane actions). [MR18a, § 2.1.3] Let F: O® — L%
be a map of reduced oo-operads. Then F induces an oco-functor of fibrations in spaces from
Tl BO — Tro(Env(9))® to my: BP — Tro(Eno(P))®.

Proof. Since €nv®(—), Tro(—)® and Fun([1],—) are (covariant) co-functors, we immedi-
ately obtain a map of fibrations from ev, o to evy g, and simply need to check that its
underlying co-functor sends the sub-oo-category BO to BL.

But since F is a morphism of co-operad, and in particular a morphism of oco-
categories over ', it sends a semi-inert morphism in O% to a semi-inert morphism
in P¥ (as F preserves inert morphisms and projections to T'). This ensures that F sends
objects of BO to objects of B'B, and it will also preserve morphisms as the condition is
on the map in T that they lift. O

In our sheafified setting, if U — V is an arrow in ¢, it will by definition induce a
map of co-operads O®(V) — O%(U), and thus a map between the associated brane
actions on O®(V)(2) and 0% (U)(2). It follows that, by the Yoneda lemma, the brane
action should be visible at the level of the components O,.
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Construction 2.2.2.2.2. Let Z € ¢. We know from remark 2.2.2.1.7| that the brane
action on 0%(Z)(2) ~ Map.(Z,0;) ~ MapE/Z(Z, 0, x Z) is given, for 0: Z — O,, (i.e.
o € 09(Z)(n)), by the cocorrespondences

[[9%(2)(2) — Ext(o) « 0%(2)(2). (2.31)

As we have seen, the space 0¥(Z)(2) can be written as Map, (Z, O, x Z). Concomitantly,
by[Lurog, Proposition 5.1.2.3] we have

EXt(O‘) =% X9 (Z)(n) O®(Z)(TL+ ])
= Mapz(z> Z) ><MapZ(Z,On) MaPZ(Z» On+1) (2-32-)
= Mapz(z> VA X On On+1 )

We finally deduce that the universal (relative) cocorrespondences given by the
Yoneda lemma are

Hn Oz X On E— On—H — Oz X On
\ l / ’ (2:33)
On

from which is obtained by first taking the pullback along o: Z — O, and then
taking sections by Map,(Z, —).

We wish to encode these diagrams as a morphism of co-operads in .

Lemma 2.2.2.2.3. [MR18a, Proposition 2.2.3] Let T = &b (&) be a stack co-topos. The
assignment

((z/i)ﬂ)cocorr .o Dpoo

Z . ((‘Z/Z)H)COCOIT (2'34)

defines an operad in <.

Proof. First, [Lurog, p. 6.3.5.1] ensures that for any Z € ¥, the slice co-category %7 is
an oo-topos. Since ¥ is in particular presentable with generating small category ¢, the
proof of [Lurog, Theorem 6.1.6.8] implies that the class of morphisms in ¥ to (images
under the Yoneda embedding of) objects of € is local, and admits a classifying object
written T,_: for any Z € €, the space Map(Z,T,_) is (categorically) equivalent to the
maximal co-groupoid of ¥,;. Furthermore, this locality property also ensures that T,
is a sheaf on €.

Since both functors (—)” and (—)" admit left adjoints, they preserve limits so we
obtain a sheaf of co-operads ((T,_)")™" : €P — Op_. O

Corollary 2.2.2.2.4. We have similarly a categorical co-operad Span ((T,_)") in <. O
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Theorem 2.2.2.2.5 (Lax brane action). [MR18a, Proposition 2.2.4] Let T = &b, (&) be
a stack oo-topos, and O%: €P — Op_ an operad in T taking values in reduced oo-operads.
There is a lax morphism of operads in T from 0% to ((T,_)1)“°", sending for each Z € € the
colour Cz of O®(Z) to the space Ext(1c, ).

The morphism is given in the following way. As a morphism of operads in ¥ is
nothing but a morphism in Fun(€°P, Op ) (a natural transformation of sheaves), we
may use the adjunctions ¢nv® and Tr® - (—*)“" to express the required morphism
as a natural transformation Tto(€nv(0))® — (T,_°P)*, that is a natural transformation
Tro(Enwv(0))® — T,_°P verifying the definition of a weak cartesian structure. Passing
to the Grothendieck constructions, this becomes a morphism of cartesian fibrations
over T

[ Tro(Enp(0))® » [T, o

\ / : (2.35)

T

It can then be seen (cf. [MR18a, Remark 2.2.5]) that this corresponds a a fibration in
spaces

B*(0) — Jlm(c’fnn((‘)))® xz sun([1],T). (2.36)

Theorem 2.2.2.2.6 (Brane action). The lax morphism defines a morphism of operads in T if
and only if O% is coherent. O

For any object F € ¥, there is an co-functor T — Fun"™(TF, T, ), Z ~ RMap ,(—, Fx
Z), which passes to a map of co-operads in ¥

RMap,_(e,F x —): (T2 = ((T2))“" . (2.37)

Corollary 2.2.2.2.7. [MR18a, § 2.2.2] For X € ¥, write By (X) = RMap(0O,, X) for the
moduli stack of O%-branes in X. Then Boe(X) has an induced structure of O®-algebra in
correspondences in X.

As in (2.36)), the brane action is given by a cocartesian fibration in spaces
B*(0,X) — J Tro(Env(0))® xzop Fun([11,%)°P, (2.38)

such that the fibre over (0: Z — O,,u: Y — 2Z) is informally given by the space
Map/Z(H,RMap/Z(Z X0, Oni1, X X Z)).
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Part 11

Gromov-Witten theory
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Chapter 3
The operad of stable maps

3.1 The Deligne-Mumford modular operad

3.1.1 Stable curves
3.1.1.1 Definition and moduli space

Definition 3.1.1.1.1 (Family of curves). A curve of genus g with n marked points is
the data of a projective curve C, that is a smooth variety projective over Speck of pure
dimension 1, of arithmetic genus dim H°(C, Qc¢) = g, with a choice of n marked points
X1y...yXn € C. A morphism of curves with n marked points is a morphism of the
underlying schemes over Spec k sending each marked point of the source curve to the
corresponding marked point (with respect to the labelling) in the target curve.

Let S be a scheme. A family of curves of genus g with n marked points over S is

a flat morphism C — S with n sections oy,...,0,: S — C, such that each fibre Cs,
endowed with the images (0i(s))1<i<n Of the sections, is a smooth curve of genus g
with n marked points. A morphism (C — S;0y,...0,) — (C' — S;07,...0,) of curves

with n marked points over S is a morphism f: C — C’ of the underlying S-schemes
such that foo; =0l fori=1,...,n.

We let M, denote the moduli stack parameterising curves of genus g with n
marked points, that is the stack whose S-points under an affine scheme $ are given
by the groupoid whose objects are families of curves over S and morphisms their
automorphisms. Its structure morphism Mg, — Speck is not proper. Intuitively,
this is because of the degeneracies which appear when moving marked points closer
to each other or when pinching cycles around the curve. We then introduce a more
general type of curves in which we allow certain singularities so as to compactify the
moduli stack.

Definition 3.1.1.1.2 (Prestable curve). Let C be an at worst nodal, reduced, connected,
projective scheme of dimension 1 and genus g with n marked points x;,...,x,. Then
(C;x1y...,Xn) is said to be prestable if all the marked points are disjoint from the
nodes.

We call special points the points of C which are either nodal or marked points.
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Definition 3.1.1.1.2.1 (Stable curve). A prestable curve (C;x;,...,x,) is called stable
if each component of genus 0 (resp. 1) has at least 3 (reps. 1) special points.

We have a similar definition in the relative setting.
Lemma 3.1.1.1.2.2. A prestable curve is stable if and only if its automorphism group is finite.

Theorem 3.1.1.1.3. [DM69, Proposition 5.1, Theorem 5.2] The stack of stable curves Mg, is
a smooth proper Deligne-Mumford stack of finite type over k.

By definition, M, carries a universal curve C;, — Mg, with universal sections,
inducing any other stable curve C — S by pullback along a unique arrow S — Mg ..

Remark 3.1.1.1.4 (Dual graph). Let (C;x;,...,x,) be a prestable curve. We can associate
to it a labelled graph lc.y,,..x.)- A vertex of I(cy, ... x,) is @ connected component of C,
to which we associate as label the genus of the component. Two vertices are connected
by an edge whenever there is a node of C connecting the corresponding components,
and the marked points of C are translated to legs at the corresponding vertices. The
genus of the graph is the sum of the genera given as labels and the number of loops
appearing; it coincides with the genus of C.

3.1.1.2 Gluing and stabilisation of curves

In this section we describe the morphisms between moduli spaces of stable curves
with different genera and numbers of marked points.

Let n > 3. There is a contraction morphism o: My,.1 — My, On the level
of points, acting on a point representing a stable curve with n + 1 marked points,
this morphism forgets the marking x,,.; of the last point, and stabilises the curve if
forgetting the point has made it unstable. More precisely, if x,; was on a rational
component C; with only 2 other special points, the stabilisation morphism will contract
this component and redistribute the special as follows:

¢ if the special points are two nodes joining C; to other components C; and Cy
respectively, so that the original component was a rational bridge with one
marked point, then the C; will be replaced by a node joining C; and Cy;

¢ if the special points are one node and one marked point, so that the original
component was a rational tail with two marked point, then C; is deleted and the
other marked point is inserted at the position of the original node.

Remark 3.1.1.2.1. We could as well define moduli spaces M, of curves with marked
points indexed by a finite set I, and describe similar stabilisation morphisms Mgy —
Mg for any i € 1. We have simply chosen to simplify the combinatorics of the
morphisms by using the natural order to select the last marked point (equivalently, we
have restricted to a skeleton of the category of finite set and reduced to invariants with
regard to the automorphisms).
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Note that the contraction morphism is of relative dimension 1, as the fibers are the
loci of possible positions for the additional marked point, that is the logarithmically
smooth loci of the divisor of marked points. The following is well-known.

Property 3.1.1.2.2. The contraction morphism is the universal curve over Mg .

Fix now two genera g;, g, and two numbers of marked points n;, n,. There is a gluing
morphism y: Mg, n, X Mg, n, — Mg, 1g,n,+n,—2- At the level of points, it simply glues
the first marked point of the curve with n, markings to the last marked point of the
curve with n; markings, and forgets the marking the resulting point (since it is nodal).
The fact that the points are glued to a node ensures that the number of special points
on each component, and thus the stability, is unaffected.

Finally, given a genus g and a number of marked points n, there is a “gluing to a
loop” morphism A: My, — Mg, which at the level of points glues the last two
marked points of a curve into a node, thereby adding a loop to the curve.

3.1.2 Operadic structure

3.1.2.1 Modular operads as a kind of generalised operads

A cyclic operad (whose definition we recall in|section 3.1.2.2) is a symmetric (mono-
chromatic) operad with an additional operation permuting the inputs and the outputs.
Whereas operads are usually represented using rooted trees, cyclic operads will then
correspond to connected trees, or connected graphs of genus 0. We wish for modular
operads to provide a higher genus generalisation of cyclic operads: while the latter
generalise operads by allowing to exchange inputs and output, they still only allow
a linear form of composition, as contractions (composition by using the output as an
input) increase the genus.

It seems clear (and will be shown injsection 3.1.2.3) that the contraction morphisms of
the moduli stacks of stable curves ought to provide a prototypical example for modular
operads.

Remark 3.1.2.1.1 (Monads and generalised operads). Recall (from e.g. [LV12]) that a
monochromatic operad in a monoidal category (U, ®) is nothing but a monad on ¥
with the additional structure of an S-module. In fact more general forms of generalised
operads can usually be described as monoids over monads (or 2-monads) on certain
categorical constructions (so-called “virtual double categories”, multi-objects versions
of pseudo-double categories).

Hence we will pursue this point of view to define modular operads.

Let (U, ®, I) be a monoidal category with final object .

Definition 3.1.2.1.2 (Stable S-module). A stable S-module M in *J is a family of ob-
jects (M((g,mn)))n,g>0 With an action of S,, on M((g,n)) for every g, and such that
M((g,n)) = * whenever 2g —2 +n < 0.

A morphism of stable S-modules is given by a collection of S,-equivariant morphisms
between the components.
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Indeed, this is the case for the collection of moduli spaces of stable maps, which are
empty whenever 2g —2 +n < 0.

Given that stable curves can be represented by their dual graphs, and that free
operads can often be constructed by appropriately summing over graphs, we will
define a monad on the category of stable S-modules from stable graphs.

Definition 3.1.2.1.3 (Stable graph). Let (G, g) be a labelled graph, that is a connected
graph G together with a map g from the set of vertices of G to N. For any vertex v we
denote n(v), called its valence, the number of legs of G attached to v.

The labelled graph is said to be stable if 2(g(v) — 1) +n(v) > 0 for every vertex v of
G.

The genus of a labelled graph (G, g) is defined[GK98, eq. 2.9, 2.10] as

9(G) = H—% (—n—i— ;(2(9(\)) —1) +n(v))) = Z(g(v)—])-l—#{edges(G)}-l—]. (3.1)

v

Construction 3.1.2.1.4 (The graphs monad). Let I'((g, n)) be the category whose objects
are stable graphs of genus g with n legs equipped with a linear ordering of the legs,
and whose morphisms are the morphisms of labelled (stable) graphs respecting the
ordering of the legs. By [GK98, Lemma 2.16], the set [I'((g,n))] of isomorphism classes
of objects of this category is finite.

Let M be a stable S-module in ¥. For any stable graph G € TI'((g,n)), we set
M((G)) =@, M((g(v),n(v))). Then, for any g,n, we let

GM((gyn) = lim  M((G)= P MIG))auwe: (32)
GeTso(T'((gym))) Gell((gm))]

This construction is functorial, and the induced endofunctor G of the category of stable
S-modules has in fact the structure of a monad by [GKg8, § 2.17].

Definition 3.1.2.1.5 (Modular operad). A modular operad in U is an algebra over the
monad G (in the category of S-modules of J).

3.1.2.2 Modular operads as graded cyclic operads with contractions

Definition 3.1.2.2.1 (Cyclic operad). ¢ A cyclic S-module C is a collection of ob-
jects (C(n))n>o with an action of S, on C(n) (where S,.. = S,.;; is the group of
permutations of {0, ..., n}). In particular each C(n) has an action of S, (so C is an
S-module), and an action of the cyclic subgroup generated by the permutation
(0T---m).

* A cyclic operad is a cyclic S-module C whose underlying S-module has a structure
of operad and such that, using the partial composition notation, for any o €

C(m), T € C(n), we have (o oy, T)Om=1) — 1(0T-n) o (0T---m)
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We usually write C((n)) = C(n — 1) for n > 0. Note that partial composition will
then map C((n)) ® C((m)) L Cm4+m—2).

Remark 3.1.2.2.2. The category of stable S-modules has a natural forgetful functor C
to the category of cyclic S-modules whose objects of n-ary operations is * for n < 2,
which forgets the higher genus components, that is C(M)((n)) == M((0,n)). It admits
as left adjoint the free stable S-module functor F, which to a cyclic S-module C with
C((0)) = C((1)) = = associates F(C) such that F(C)((g,n)) is C((n)) if g = 0 and « if
g>0.

Definition 3.1.2.2.3 (Graded cyclic operad). A grading on a cyclic operad C is an S;,-
invariant decomposition C((n)) = [ | 450 C ((g,n)) such that partial composition maps
C((g,n)) @ C((h,m)) =5 C((g +h,n +m —2)).

We say that a graded cyclic operad C is stable if C((g,n)) = * whenever 2g—2+4n < 0.

Construction 3.1.2.2.4 (Contraction maps for modular operads). Let G € T'((g,n))
be a stable graph. Let i,j < n. Gluing together the legs i and j of G adds a loop
while forgetting two legs, and hence gives a graph x;;G € I'((g + 1,n — 2)). Since
forgetting legs preserves the relative ordering of the remaining legs, this operation
commutes with the isomorphisms in I'((g,n)) and defines a functor Jso (I'((g,n))) —
I'((g+ 1, — 2)). In particular, for any stable S-module M, we will obtain morphisms
Xij: GM((g,n)) = GM((g+ 1,n — 2)), giving if M is a modular operad morphisms
Xij: M((g,n)) — M((g+1,n—2)).

Theorem 3.1.2.2.5 (Other definition of modular operads). [GK98, Theorem 3.7] The data
of a modular operad is equivalent to that of a stable graded cyclic operad with contraction maps
Xij: C((g,n)) — C((g + 1,n — 2)) satisfying the following coherence conditions for any
n,m >0, 1i,j, k,{ < ndistinct and o € C(m),t € C(n):

1. XijXkt = Xk,Xijs
2. X12(00m T) = (X120) Om—2 T,

3 Xmm+1 (G Om T) =00y (XI,ZT);

4. Xm—],m(G Om T) = Xm+n—2,m+n—1 (G Om—1 T(m - )
Example 3.1.2.2.6 (Endomorphisms modular operad). Suppose V € U is equipped
with a tracemap T: V® V — I (for example (U, ®, I) = (Mody, ®, k) is the category of
k-vector spaces and T is a bilinear form on V). We then define a modular operad £[V]
by £[VI((g,n)) = V¥ for any stable g, n, with S,-action given by permutation of the
factors, and the compositions and contractions induced by T.

An algebra over a modular operad M is an object V with a trace map and a morphism
of modular operads M — £[V].

55



3.1.2.3 Cohomological field theories and the operad of moduli of stable curves

Proposition 3.1.2.3.1. The collection (M) on defines a modular operad in the category of

algebraic stacks (with the cartesian monoidal structure), with S,-action given by permutation
of the marked points and composition given by gluing of curves at the marked points.

Proof. Put M((g,n)) = Mgn+1, with the S, -action (at the level of points) permuting
the marked points of a stable curve. Clearly the stability condition on curves is equi-
valent to M being stable as a graded cyclic S-module. The operad structure is given,
in terms of partial composition, by the gluing maps y: M((gi,n1)) x M((g2,n2)) —
M((g1 + g2,y + n, — 1)). The contraction maps are given by the gluing to a loop
A M((gym)) = M((g,m —2)). It is straightforward to check that these maps satisfy
the compatibilities for a modular operad. O

The structure of modular operad of the moduli stacks of stable curves induces a

modular operad in graded abelian groups on the collection (AMg) on’

Definition 3.1.2.3.2 (Cohomological field theory). A cohomological field theory (or
CohFT) is an algebra over the modular operad (A, M) gn I the category of graded
abelian groups.

Remark 3.1.2.3.3. Byremark 3.1.2.2.2} the collection of genus zero moduli stacks defines
a cyclic operad in DM-stacks (Mo, )n. To force unitality, we replace My, = () by a
single point , to be thought of as parameterising a projective line P, with 2 marked
points “stabilised” by removing automorphisms. We then obtain a unital operad in DM
stacks M with M(0) = @, M(1) = * (acting as the unit with regard to the composition)
and M(n) = Mg forn > 2.

A tree-level CohFT is defined as an algebra over the operad in graded abelian groups
A M.

Since M((g,n)) = Mgyn11, a CohFT on an abelian group G will be given by morph-
isms Ae M1 — G®. Using the Poincaré pairing on to dualise and the trace of G
to partially dualise, this is equivalent to maps (GY)*™ — A* Mg .11

The structure of a CohFT is thus given by the following data: an abelian group
H with a non-degenerate pairing (-, ), an element 1: Z — H, and for each (g,n) an

Sn-equivariant homomorphism Fy,: H*" — A®*M,,, such that:

e forany o, ..., 0, 4n,—2 € H,

y*]:91-*-92»111+nz—2(o¢1 K- & Xn, +n2—2)
=3 Fom (00 @+ @ otny—1 @ RNFgy 0, () @ oty © -+ © Oty sy (3.3)
i,j

where (h;); is a basis of H and (n%);; the inverse of the pairing matrix n;; =

(hi, hy);



e forany «q,...,x, € H,

NFgim(an ® - @ o) = ) Fonpalon @+ @ o @ hy @ hy)n (3-4)
L,j
e forany «q,...,x, € H,
0" Fgnlot @ @ an) =Fgnir(o @+ @ o @ 1) (3-5)
e forany o, 0, € H,
J Fos(ou, 0, 1) = (o1, az). (3-6)
(Mo,3]

3.2 Stable maps and Gromov-Witten theory

3.2.1 The moduli stack of stable maps

Let X be a smooth projective k-variety, and 3 € A;X be a cycle class in X.

3.2.1.1 Definition of the moduli stack

Definition 3.2.1.1.1 (Stable map). A genus g stable map with n marked points to X
with class {3 is the data of a prestable curve (C;xy,...,X,) of genus g with n marked
points and a morphism f: C — X such that f.[C] = 3, respecting the Kontsevich
stability condition: any irreducible component sent to a point must be stable as a
marked curve.

Our aim is to study the moduli stack M (X, ) of stable maps to X with class (3.
This moduli space of stable maps fits into the natural mapping space diagram

Mgn(X, B)

V X , (3.7)

Mgn X

where Stab: Mg, (X, B) — My, is the morphism which forgets the map and stabilises

the source curve, and ev: ./\/l—w(X, ) — X" is the evaluation morpism (evy,...,evy) in-
duced by the morphisms of evaluation of the map at the ith marked points ev;: My (X, ) —
X.

A class B € A;X is said to be effective if there is a stable map f: C — X such
that f.[C] = B. We denote NE(X) the Mori cone of (numerically) effective classes
([Deb16]). It has the structure of a semigroup; furthermore it has the properties required
by [Coso6], that is:

indecomposable zero: 3 +v =0 implies p =y =0;
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finite decomposition: for every o € NE(X), the set {(B,y) € NE(X)? | B +v = of is

finite.
Let B € NE(X). We let 9y g be the moduli stack, constructed formally in [Coso6), §
2.0], parameterising prestable curves (C;x;,...,x,) of genus g with n marked points

and with each irreducible component C; labelled by a class 3; € A;X such that Zi Bi =
3, with the stability condition that C; must be stable as soon as (3; = 0.

Property 3.2.1.1.2. [Cos06, Proposition 2.0.1] The stack Mg ., g is a smooth algebraic stack.

Let €5 g — Mg n p denote the universal curve over the moduli stack. There is also
the forgetful morphism Mg, 115 — Mg n,p, Wwhich forgets the last marked point and
stabilises if needed the resulting unstable components.

Proposition 3.2.1.1.3. [Coso6, Proposition 2.2.2] There is an isomorphism €y, g = Mg ni1p
of stacks over Mgy, .

Corollary 3.2.1.1.4. [Behgy, Proposition 4] The stack Mgy, (X, B) is an open substack of
Homyge, o (Mg ni1p, X X My np) (where Hom , denotes the relative internal mapping stack).

Proof. This follows from the fact that Mg .15 — Mg g is the universal curve. Let S
be a My, g-scheme. We have

Homymm, o (Mgnirp, X X Mg np)(S) :=homs (mg,nﬂ,rs o S, XX Mgnp X 5)

g,m, B mg,nyﬁ

= hom/g (Q:g’n,[g mX S,X X S)

g,mn,B

= hom (Cg,n)ﬁ o S,X) .

g,mn,B

(3.8)

But by property of the universal curve, the pullback €y, s Xan, , , S is a family of curves
C — S selected by the structure map S — Mg 5.

Therefore this category is exactly the category of all S-parameterised families of
prestable maps to X whose source is compatible with (3. The degree condition f.[C] =
(and f.[C;] = B; for irreducible components C; with marking (3; from a decomposition
of B) is semi-continuous so M, (X, B) is open. O

Corollary 3.2.1.1.5. [|Behgy, discussion between Propositions 4 and 5] The stack My (X, 3)
has a canonical relative perfect obstruction theory of virtual dimension

vdim Mg, (X, B) = (dimX —3)(1 —g)+n + Jﬁ c1(Tx). (3.9)

Proof. A perfect obstruction theory on the mapping stack from the universal curve is

given by the relative version of fexample 1.1.2.2.3} Since Mg, (X, B) is open, it inherits
an induced relative perfect obstruction theory.

The computation of the virtual dimension then follows by the Riemann—Roch the-

orem and arguments from deformation theory (as the virtual dimension is locally

constant). See for example the explanation in [Nab1s, §3.4]. Il
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3.2.1.2 Operadic structure

Construction 3.2.1.2.1 (Operad of decorated prestable maps). For any n > 2, any
genus g > 0 and any class 3 € NE(X), set M((g,n, B)) == Mg ny1,s. Similarly, for any
g>Tlandn =1,orn =0and g > 2, set also M((g,n,B)) = Myny1,5. For g =1
andn=0,org=0andn < 1,set M((g,n,0)) = Speck and M((g,n, B)) = 0 for any
B #0.

This produces a NE(X)-graded stable S-module 9t = (9M((g,n, B)))(g,n)eNz,BeNE(X) in
the cartesian monoidal category of stacks in groupoids.

Proposition 3.2.1.2.2. [MR18a, Proposition 3.1.4] The graded stable S-module 9t is a NE(X)-
graded modular operad in algebraic stacks.

Proof. Similarly to the case of proposition 3.1.2.3.1, we obtain the operations defining a
modular operad from the operations on curves described in|section 3.1.1.2| There only
remains to check that these operations are compatible with the grading. If o7 € Mg, 1, g,
and 0, € Mgy, n, p,, then the curve obtained by gluing will have the marking (3; on
the components coming from o; and marking 3, on the those coming from o,, which
from the definition of prestable curves with markings means that it will be a curve
parameterised by 9y, 1g, n,+n,-1,8,48,- It is even easier to see that the other operations
respect the grading as well. O

Corollary 3.2.1.2.3. The induced NE(X)-graded cyclic S-module My = (M((0,n, 3)) )neN’BeNE(X)
is a NE(X)-graded cyclic operad in algebraic stacks. O

Proposition 3.2.1.2.4. There is a morphism of NE(X)-graded modular operads MM — M x
NE(X).
Similarly, there is an induced morphism of operads My — My x NE(X).

Proof. First we note the following. Let B be a monoid with indecomposable zero and
finite decompositions. There is a canonical functor from the category of B-graded
modular operads to that of modular operads, forgetting the B-graded structure by
taking B-indexed coproducts: G((g,n)) = [ [, G((g,m,b)). This functor admits a
“trivial B-grading” right adjoint, given by product with B, with the obvious induced
grading: M((g,n,b)) = M((g,n)) x {b} (and for more general enrichments of the
monoidal category, replacing the product with an appropriate cotensor). Indeed, the
adjunction property is exactly the universal property for the coproduct in the forgetful
functor (explicitly, giving a collection of maps G((g,n,b)) — M((g,n)),b € B is the
same as giving maps G((g,n,b)) = M((g,n)) x {b},b € B). So it is enough here to
exhibit the morphism of (non-graded) operads.

The morphism considered here is as usual given at the level of points by stabilisation.
For a given prestable curve with marking (3, we obtain a stable curve by forgetting
the class 3 and stabilising the underlying curve. This construction clearly preserves
the operadic structure (or in other words, commutes with all operations on marked
points), so it defines a morphism of modular operads. O
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3.2.2 Gromov-Witten theory
3.2.2.1 Gromov-Witten classes

Passing to the Chow groups, the diagram (3.7) induces morphisms ev*: A*X" =
(A*X)®™ — A* My (X, B) and Stab..: AcMg (X, B) = AcMgn.

By corollary 3.2.1.1.5, the stack M, (X, B) is canonically endowed with a virtual fun-
damental class [Mg (X, B)] "€ AvaimMgn (X, B). We can then define the Gromov-Witten
class

Iy = Stab, o [Myn(X, B)]"™" —~ ev*): (A®X)¥" = A*X™ — A M., (3.10)
that is

Ig,n,ﬁ(V] R ® 'Yn) = Stab, ( Mg,n(X) B)}Vir ~ev" ('Yh tet )Vn)) (3'11)

for yi,...,yn € A*X.

Remark 3.2.2.1.1. Our capping with the virtual fundamental class explains why we
use the bivariant rings A* on X and the Chow groups A, for M, as the cap-product

induces [Mg. (X, B)}Vlr ~: A Mg (X, B) = Avdim—eMgn (X, B).

Remember that the modular operad of stable curves has M((g,n)) = Mg1. The
correspondence of (3.7) for n + 1 marked points can also be written as

gn+1 X B

(Stab,y Xﬂﬂ‘ (3.12)

Mil(g,n)) x X"

where we also recall that X" = £[X]((g,n)) is the component of the modular endo-
morphisms operad of lexample 3.1.2.2.6|for any g.

Theorem 3.2.2.1.2. The Gromov—Witten classes provide, through the correspondence of (3.12)),
a structure of CohFT on A*X (with the intersection pairing as contracting bilinear form).

Proof. This amounts to saying that the Gromov-Witten classes verify the axioms [

Corollary 3.2.2.1.3. The genus zero Gromov—Witten classes provide a structure of tree-level
CohFT on A*X. O

We also define the Gromov—-Witten invariants as the degrees of (the Poincaré duals
of) the Gromov-Witten classes (taken by cap-product with the fundamental class of

gn):

<Ig,nf5> = J[M} Igng, (3.13)
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which by Fulton’s functorial change of variables is

<Ig,nﬁ>h/1 Q- ® Yn) = vir eVTh”) o ev;kt(yn)' (314)

J [Montxp)]
Remember also that cap-product with the (non-virtual) fundamental class is given by
pushforward along the structure morphism to the point Spec k.

So as to solve issues of convergence, we often work formally, over the Novikov ring
which separates the effective classes. The semigroup ring k[NE(X)] of the monoid
NE(X) has a maximal ideal m generated by the monomials in a choice of basis elements,

and we define the Novikov ring A as its formal completion Z\ER}. It consists of
formal series in the elements of NE(X). We usually write QP for the element of A
corresponding to B € NE(X), with the multiplication law QPQP" = QF*F, so that
A ={Y penex) QP | g € K},

It is often convenient to fix a (homogeneous) basis of A*X. We write {T; Jo<i<, (Where
r = dim A*X — 1) for the basis elements, such that Ty = 1 € A°X is the unit for the
cup-product (the Poincaré dual to the fundamental class [X] € AgimxX), and x; for the
generic coordinates, so that a generic classis y = ) ; x;T;. We also denote (g;;);; the
metric given by the intersection pairing: g;; = I[X] T, — Tj, and (gi’j)i’j for its inverse
matrix. We define the Gromov—-Witten potential as

2 1 n
(D(Xh-“)xr) = QBE(Io,n,@(Y@ )
n>0 ’
BGNZE(X)

[T x& (3.15)

'
2. Lrgilmen e o1,
doyenydr,3_; di>0 L
BENE(X)

We see easily that its third derivatives are

di
Z X
q)i)jak = QBH d | <IOZ d1+3 B>(TO ). )T]fi )TI)T)Tk)‘ (3'16)
dO»"')dT)ﬁ i

We now define the quantum cup-product on A*X ® A[lx, ..., x.]] to have the ®;;y as
structure constants, thatis Tie Ty := ), ., @i 59" T,

The small quantum product on A*X ® A is similarly defined by only considering in
the sum the terms with ) . d; = 0. Then the small quantum productof y; = ) x; Ty

and v, =} yiTiis
YieY:= Z XiHJQfTillgk’eTe
Lk,

=D xy ) QML) (@ T © T)gh'T

ik, B (3.17)
— B * — * _ T k,ﬂT
Q vir EV1Y1 eV Y2 —€ev3 I | g7 g
“ip (Mo 0x,8)]
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Proposition 3.2.2.1.4. The small quantum product is given in a coordinate-free way by

yieva=) QPevs. (eVT Y1 = eviya ~ [Mos(X, B)}V“> (3.18)
B

Proof. Taking the projection of onto T, gives

J Yiev:— T, = J > QF J w1V —evy Y, —evi Ty | go T — T,
X X k(’, B [M0,3(X»[3)]

—ZQﬁZ(J
-2l

)
€11 —evyy2 —evy T | g gy
Mo3 ﬁ]}

* * *
L€V Y1 — eV, Y, — evy Tp>

[MO,S(X»B)]W
(3-19)
But, by functorial change of variables, for all 3 € NE(X):
J - W€V Y1 —evyy, —ev; T
[Mosx,p)]
= J - eviyr — evy Y2 —evy I, ~ [Mgs(X, ﬁ)}m
[Mosx,6)] (3.20)

= J evs. (eVT Y1 —evsys —evi T, ~ [Mos(X, B)]Vir>
X

:J evs. (eVT Y1 — evi v ~ [Mos(X, B)]Vir) — T
X]

by the projection formula of [Fulg8, A,.;, p.323] (and where in the last line we implicitly
use Poincaré duality twice, along with the functoriality of the virtual fundamental
class[BF9g7]). O

3.2.2.2 Quantum K-theory

Mimicking the expression of leq. (3.18), we would define a quantum product on Go(X) ®
A by

€leF= Y QPevs. <ev7[8]®ev;[fﬂ® [Oﬁosxm}) (3.21)

BeNE(X)
(X)Bl ):| ) ’

(3.22)

This is however not associative.
We define the K-theoretic quantum product by

T
[8) vir vir
E Q evs, (ev1 I®ev;[Fl® E [OMO ~(X ﬁo)} ®® [OMO‘Z
BENE(X >0 i=1

Boye-sBr
Zi ﬁi:ﬁ
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and we will dedicate the rest of the section to understanding the additional terms.

Lemma 3.2.2.2.1 (Refined Gysin morphism in bivariant K-theory). [Leeog, § 2.1, (1)][MR18b,
eq. 5.4.3] Consider a reqular embedding f: B’ — B and a cartesian square

VLNV

ql - lp . (3-23)

B/—f>B

Then there is an induced map f': Go(V) — Go (V).

This map can in fact be constructed from the homotopy fibre in the following way. There is
a canonical map j: V' — V x& B’ from the universal property of the homotopy fibre product,
which is the closed embedding of V' into its derived enhancement. Write f the canonical map
VxBB = V. Then f' = (j,) ' of .

3.2.2.2.2  Consider the gluing morphisms y: Mg, », X Mg, n, = Mg, 14, n4n,—2 aS
well as the forgetful stabilisation morphism Stabg: M. (X, ) — Mg,, where we
write g = g1 + g, and n = n; +n, — 2. Let us describe the points of the fibred product

Zﬁ = (Mg1,n1 X Mgz,nz) XWMQ»H(X) B) (324)

by comparing the fibres of these morphisms.

Let 0: Speck — M, classify a prestable curve of genus g with n marked points. A
point in the fibre of y over o will simply correspond to a decomposition of the curve o
in two prestable curves (o7, 0;) in a way compatible with the genera and the markings.
However, a point in the fibre of Stabg will classify a stable decorated curve of total class
B, whose stabilisation coincides with 0: components with a non-zero class (3; may be
highly unstable and differ from o as they will be contracted. In particular, a point of
S’cabg1 (0) may correspond to a pair of curves in y~' (o), not directly glued together at
marked points but connected by a tree of rational bridges, each a P' with two nodes
and no markings, and thus a non-zero class ;. The only requirement is that marked
points glued together be sent to the same point in X by their evaluation maps. The
fibre of Stabyg, this time over a point (o7, 0;) of the fibre y~' (o), can then be described
as

LT LT XG s xx Xoam xx xxXoag, Xx XZp,,  (325)
T20 Bo+-+Bri1=P

where we write Xg, n,p; = Mg, n (X, Bi) and Xg' 5
to Mg, n, over oi. Note also that as NE(X) has finite decompositions, the number of
decompositions 3 = 3o + - - - + P41, that is the number of terms in the coproduct, is

finite. Hence a point of the fibre product Z consists of a pair (o7, 0;) and an element
of a decomposition as in (3.25).

for the fibre of its stabilisation



3.2.2.2.3  From the universal properties of the coproducts and of the fibred product,
there are then maps V¥, g fitting in the commutative diagram

T
| | Xgh“hﬁo;z | | XO,Z,ﬁi ;<<X92»n2vﬁ‘r+1

r+1 X,lz]
> Bi=B
i=0
Yy
ZB —>J Xg,n,ﬁ = Mg,n(x> B)
Mg])n] X Mngﬂz [0} Mg)n

(3.26)
By [Leeoy, Proposition 11], there is an equality of G-theory classes

T vir o | vir
Z(_” \yr’ﬁ’* Z {Oxgl,m,ﬁo XX l;[r ]Xo,z,ﬁi XXxQZv“Z)Br+l:| =0 [Oxg,n,ﬁ} - (327)
>0 2 i Bi=B =

3.2.2.2.4  Consider now the morphism Xg, n, po X X0,2,8; X Xgs,n2,8, — (XxX)? givenby
the evaluations evy,, X evy: Xg, n,,80 X Xo2,8, — XxXand ev, x evy: Xoz g, X Xg,n,,8, —
X x X. Writing A?: X* — (X x X)?, the fibred product over (X x X)?is clearly X, n, p, Xx
Xo0,2,8, Xx Xg,,n,,8,- Then the product property [Leeoy, Proposition 6] gives

2, vir vir vir _ vir
A (|:OX917“]»f30i| & |:OX0»2»(5]i| & [Oxgz,ﬂzyﬁz}) o [OXQ]»H]‘ﬁoXXXO,Z,B]XXng»nz»ﬁz] ’ (328)

It is straightforward to observe that similar formulee hold over the r-fold product
of diagonals A™: X" — (X x X)" for the higher decompositions of 3. We can finally

rewrite as:

T T,! vir T vir vir . ! vir
Z(_]) Wr,ﬁ,* Z A (|:Oxg1,n1,[30i| ilé |: XO,Z,B,;] & [Oxgz,nz,ﬁr+]i|> o (D [ Xg,n,ﬁ] ’
>0 Zi Bi=Pp

(3-29)

3.2.2.2.5  Asin the case of quantum cohomology, it is convenient to introduce a basis
Koy - . ., Ks Of Go(X) such that ko = [Ox], as well as the pairing metric h;; = X(k; ® k;)
with inverse matrix (h').

We also define the K-theoretic Gromov-Witten invariants

(Tonp) (€)@ @ [£]) = x (Stab. (eviler] @ - @evilEal @ |03 1)), (3.30)

where x is the Euler characteristic, given by pushforward along the map to Speck.
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Now for a general element E = ), tik; € Go(X), the K-theoretic Gromov-Witten
potential ®(E) € Go(X) ® Allto,...,ts]] is defined as

1
I3 @n
Ot t:) =5h(E, E) + ZO QP — (Ignp) (E")
PENE(X)
1 H t d
=32 _thhy+ ) UL d|<02dl,s> (kg™ @ @ kIh).
i doyeenyds, Y di>0
BENE(X)
(3.31)
We finally introduce the “quantised metric”
hij(E) = 04,0 ®(E) € Z® AlE], (3:32)
and, using its inverse (h"), the quantum product
Ki e Kj = ) (94,0401 ®(E)) R (E)ke. (3:33)

k¢

Once again we specialise to a small quantum product by setting E to zero: for &; =
2_ixikiand & =} ;yik;,

re&2=Y Y Q' x (Stab* (ev;* &1 ®evs & ®evi Kk ® [OM ) ])) el (3.30)
k¢

Following [Leeo4, Remark 10], developing the inverse of the metric and applying
base-change formulee, this is the same as

Ei10&E = Z Q‘5 - ev3, <ev}k EiRev; E2® @' [O‘ET,S(X»BJ> , (3-35)
B

where @' is as in (3.27). Finally, applying with the decomposition My 3 x Moy, —
M, 3, we obtain the product defined in (3.22)).

Remark 3.2.2.2.6 (Comparison with quantum cohomology). Notice that the difference
betweenleq. (3.22)|and [eq. (3.18)| consists of the terms with r > 0; indeed a formula
similar to eg. (3.29)| with the sum stopped at r = 0 holds for the virtual fundamental
class. This comes from the fact that the higher decompositions of the fibres of Z;
are intersections of divisors in X, 3, which are not seen in the part of the Chow
ring of degree the virtual dimension. See also the derived geometric interpretation
infremark 4.1.1.2.5

3.3 Digression: Quasimap moduli space

In this section we discuss a generalisation of Gromov-Witten theory in which the
stability condition is allowed to vary, giving a family of theories parameterised by Q.
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3.3.1 Preliminary considerations
3.3.1.1 Stability conditions in Gromov-Witten theory

To begin with, let us recast the combinatorial stability condition for stable curves in
terms of the algebraic geometry of the curve.

Let (C;x1,...,Xn) be a prestable curve. Let wc¢ be the dualising sheaf of C. The
logarithmic dualising sheaf of the prestable curve is

w(C;x1,...,xn),log = Wc¢ (Z Xi) s (336)
i=1

which we will write simply as wj,; whenever there is no ambiguity. Recall that if C is
smooth its dualising sheaf is the canonical sheaf A\' Ql. = QF, and if C is nodal with
nodes yi, ..., Yy, forming a divisor D = )_.[y;] it is the twisted Q[ (D). It is enough to
study the irreducible components individually.

Suppose C ~ P! is a rational component (of genus 0). Then its dualising sheaf is
the cotangent sheaf wp1 = /\] QI‘P] = Op1(—2). Adding a divisor of m = n + #{nodes}
marked or special (i.e., or nodal) points gives

Wiog = Opr (_2 + m) (337)

If m = 0 or m = 1, the logarithmic sheaf has no global sections; if m = 2, the
logarithmic sheaf is the structure sheaf whose global sections are constant. If m > 3,
thatis (C;x,...,%y) is stable, then wy,, is a tensor power of the twisting sheaf, which
is very ample. Hence a prestable curve of genus 0 is stable if and only if its logarithmic
sheaf is very ample, if and only if it is ample, if and only if it is of (strictly) positive
degree deg Op1 (m —2) =m — 2.

Note that, more generally, a line bundle £ on a projective smooth integral curve
over k is ample if and only if deg L > 0 (see [Vak17, 19.2.E]). We can then use the
Riemann-Roch theorem to describe the invertible sheaves on curves.

Suppose now C is a smooth curve of genus 1; by smoothness the dualising sheaf is
the canonical sheaf. Then we = O¢, and I'(C, O¢) = k. We also find that any degree 1
line bundle is of the form O¢(x) for a point x € C. Hence once again, (C;x1,...,xy) is
stable if and only if its logarithmic sheaf is of positive degree, that is ample.

Finally, suppose C has genus at least 2. We compute degw = g — 1+ h°(C, w) —
h%(C,0c) = 2g —2 > 2 > 0. Thus every curve of genus greater than 1, which is
automatically stable without special points, has an ample (logarithmic) dualising sheaf.

In conclusion, the stability condition on prestable curves can be rephrased as an am-
pleness condition on their logarithmic dualising sheaves: a prestable curve (C;x;, ..., Xy)
is stable if and only if wc jo; = QF (X xi +nodes) = we(Y_; x;) is ample.
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3.3.1.2 Geometric quotients

Let W = SpecR be an affine variety with an action of an algebraic group G. We can
consider several quotients. The affine quotient W/G is defined as the affine

W/G = Spec(RG), (3-38)

with R-algebra of functions the subring of G-invariant elements of R. This quotient is
not always interesting, as the only invariants may be trivial. On the other end is the
stack quotient [W/G], whose category of points over a scheme S is that of principal
G-bundles (or G-torsors) over S endowed with a G-equivariant map to W.

Geometric invariant theory (GIT) allows us to consider a quotient as a (relatively
projective) scheme W/ G, over which a certain sub-quotient (DM, under some assump-
tions) stack [W*/G] is actually proper. Considering the graded R-algebra

Rlz] = R@klz] = T(W x A, Oy ), (3-39)

whose graduation is only induced by the polynomial degree of the added variable z,
we can rewrite W as W ~ Proj(R[z]) (indeed the homogeneous ideals will have to be
concentrated in degree 0 so as to not contain the irrelevant ideal zR[z]; this corresponds
geometrically to the tensor product making R into the constant functions on the Proj).
Here we have thus introduced the trivial line bunde W x A' over k. The idea of GIT is
then to use this new expression of W to take the invariants for a G-action extended to
W x A', called a G-linearisation of the bundle.

Fix a character 9 € hom(G, Gy,). Itinduces (by multiplication, i.e. GL(A") = A"\{0} =
Gm) a 1-dimensional representation of G on A', which we write as A}. We now have
an action of G on both W and A!, which allows us to “twist” the trivial line bundle
with an action, and we write the resulting G-variety as W x A}. Explicitly, the action is
g-(xA) =(g-x,9(g)'A) forx € Wand A € A": we use the inverse character 9~'. The
graduation on the algebra R[z] of global sections of the bundle induces a graduation
on the invariants R[z]¢, and we can set

W /3G = Proj (R[z]G) , (3.40)

which is projective over the affine quotient. The graded algebra defining this GIT
quotient W/, G admits a simple reinterpretation in terms of the action on R. Say that
an element f € Ris a relative invariant of weight 9 if, for any x € W and any g € G, we
have f(g - x) = 9(g)f(x). The set of such relative invariants is denoted R®?. A general
homogeneous element of R[z] is written f-z" with f € Rand n € N. From the definition
of the action, we immediately see that such an element is G-invariant if and only if f is
invariant of weight 9". Hence

R[z]€ ~ @ RS, (3.41)
n>0

Furthermore we also have R = T'(W, (W x A})®™)¢ (where the tensor product is
that of line bundles over W).
In addition, the GIT quotient also has a geometric interpretation.
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Definition 3.3.1.2.1 (O-stability[King4]]).

1. A point x € W is d-unstable if for every relative invariant f € RS, n > 1, we
have f(x) = 0.

2. A point x € W is -stable if for every one-parameter subgroup G, C G, the orbit
Gm - (x,1)in W x A} is closed.

3. A point x € W is ¥-semistable if it is not d-unstable.

We denote by wesd Wed and wesdthe open loci in W of respectively 9-semistable,

V-stable, and d-unstable points. Then W /3G is isomorphic to the quotient of wesd by
the equivalence relation that x ~ y if and only if the closures of their G-orbits intersect

non-trivially in wesd,

Example 3.3.1.2.2. Let R = k[xo,...,%n], 50 W =A™ and G = G, act on W by global
rescaling. If x € W, its G-orbit is {Ax | A € Gy} ~ A"\ {0}, a line passing through the
origin and x with the origin removed. The orbit of 0 is {0}, which is a closed point. Any
other orbits have their closures intersect in {0} only.

Let ¥ = 1g, be the identity character. A function f € k[xy,...,x,] is invariant
of weight 9' if and only if it is homogeneous of degree (. From this we see that
Artly 1, Gm =P In fact, it follows from the description that the only unstable point
is 0, with the points of A"\ {0} being semistable, from which we recover the usual
description of the points of P™.

Furthermore, the orbit of (0, 1) in A™! x A is the punctured line {0} x (A \{0}) which
is open, while for a semistable point a = (ay, ..., a,) € A™"\ {0} the orbit of (a, 1) is
the closed subscheme defined by (Axy — ao, ..., Axy, — a,) in Spec(k[xo, ..., xn][A]), sO
the stable points are exactly the semistable.

3.3.2 Definition of quasimaps
3.3.2.1 Quasimaps to a GIT quotient

We suppose from now on that W® = W* =£ (), that is the stable and semistable loci
coincide, and that they are nonsingular and are acted upon freely by G, so W /G
coincides with [W%?/G]. By definition, a morphism [u] from a scheme S to the stack
quotient [W/G] consists of a principal G-bundle P — S and a G-equivariant map
u:P—S.
Remark 3.3.2.1.1. The map [u] can be equivalently given by a section u of the associated
bundle P x¢ W — S. Indeed, let u be a map as above. Since the G-orbits of P are
parametrised by the points of S, for a given point s € S the fibre over s will be sent
(equivariantly) to a G-orbit in W, hence, by construction of the associated bundle, a
single point over s is selected, giving a section.

Conversely, let u: S — P xg W. For p € P lying above s € S, write u(x) = [p’, w]
(which is equal to [gp’, g7'w] for all g € G). Since the fibre P is a G-torsor, there is
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a unique g € G such that p = gp’. Then we set U(p) = g~'w, which is well-defined
independently of the choice of representatives (p’,w). Notice also that this map is
G-equivariant.

Construction 3.3.2.1.2 (Degree of a quasimap from a curve). Suppose now the base
scheme is a curve C. Let L € Pic®(W)bea G -equivariant line bundle on W. There is an
induced line bundle P xg L — P xg W, and a line bundle [* .= u*(P xg L) — C. Then
we define the degree 3 € Pic®(W)" by

B: Pic(W) = Z
u . (3.42)
L B(L) =deg.L" = degc(u (P xg L)).
The induced line bundle L* can also be reinterpreted through the (defining) isomorph-
ism Pic® (W) = Pic([W/G]), given by £ — [£/G]. Then, writing [u] for the correspond-
ing map to the quotient stack [W/G], we have [* = [u]*[L/G].
We set
Ly=(Wx Ay =u" (P xg (W xA}). (3.43)

Definition 3.3.2.1.3 ((Prestable) Quasimap). A quasimap of genus g, with n marked
points, of class 3 € Pic® (W)Y, to W/,G, is a prestable curve (C;xy,...,X,) of genus
g with a principal G-bundle P — C and a section u of P x¢ W — C of class 3 such
that the generic point n; of each irreducible component C;of C is sent by u to the stable
locus W® of the fibre W, ; in other words there are at most finitely many points sent to
the unstable locus W \ W*,

A quasimap is said to be prestable if its basepoints are disjoint from the special (i.e.
nodal and marked) points of the underlying prestable curve.

Let (C, (xi)i, P,u) be a prestable quasimap to W /G, and let x € C. We define the
length at x to be the order of contact £(x) of the image u(C) with the unstable locus

P x¢ W™ at u(x). Explicitly, let J denote the ideal sheaf defining the closed subscheme
P xg W™ C P xg W, then

{(x) = length (coker(u’: u*J — O¢)). (3.44)

Property 3.3.2.1.4. [CKM14, p. 42] Foranyx € C, we have B(W x A}) > £(x) > 0, whith
U(x) > 0 if and only if x is a basepoint (and in particular, B(W x Al) > 0if B # 0).

3.3.2.2 Stability condition

Definition 3.3.2.2.1 (e-stability). Let ¢ € Q.. A prestable quasimap (C, (x;);, P,u) to
W//,G is e-stable if

1. the Q-line bundle wc oy ® £§*° € Pic(C) ®z Q is ample,

2. for every point x of the curve, ¢ - {(x) < 1.



We define in the obvious way the notions of isomorphisms of stable quasimaps (C, (xi)i, P,u) —
(C'y (x})i, P, 1), consisting of isomorphisms f: C = C'and @: P = P’ preserving

the marked points and the section, and the notions of families of quasimaps over a

base scheme.

Remark 3.3.2.2.2. Observe that a quasimap to W /G is e-stable if and only if it is
—-stable as a quasimap to W/ ,5G. More generally, we may take 9 to be instead a
rational character, which allows to replace the choice of ¢ by that of the coefficient of
¥ € hom(G, G,,) ®z Q.

Explicitly, the e-stability conditions impose the following properties:

* Let X be a rational component of the source curve C. If Lyl; is trivial (i.e. of
degree 0) then w),; must be ample and I stable, that is it must have at least three
special points. Otherwise the number of special points on £ and the degree of
Ly|s will compensate for stability; more precisely if £;|; has negative degree —d
then X~ must have ed + 3 special points, and if & only has i special points (for
i1=0,1,2) then £; must be of degree %

* Similarly, if Z is a component of genus 1 with i marked points, we must have
i > —edeg Lyly + 1. More generally, for I of genus h, the stability condition
gives i > —e deg L]y, —2h + 3.
This can be made clearer in the two extreme cases.

Remark 3.3.2.2.3 (Stable maps and stable quasimaps).

For ¢ < B(W x A})~!, condition]oimposes no additional condition by[property 3.3.2.1.4
Concomitantly, since on any component of genus h the degree of £y cannot be
greater than B(W x A]) < &', we have at best the need for 2 — 2h special points.
In particular there can be no rational tail (rational components with only one
special point). We refer to this as the “¢ — 0% chamber”, and call the 0"-stable
quasimaps (which are thus e-stable for any ¢) simply stable quasimaps.

For ¢ > 1, condition|z]allows no basepoint (since {(x) is an integer), so the quasimap
datum defines an actual morphism [u] to W /5 G, of cycle class [u].[C] € A;(W/,G)
which vanishes if and only if 3 does. Furthermore, from the discussion of

we see that the quasimap is e-stable if and only if it is a stable map.
We also write this chamber as the “¢ = +oo chamber”.

In fact, by similar arguments, the condition of e-stability remains identical in the

1 1 *
chamber52£>d—+1,fordEN.

Example 3.3.2.2.4 (Quasimaps to a projective variety,following [CJR17] and [CKMu14]).
We study the case where the target space is a subvarietyZ C P™, defined by r homo-
geneous polynomials Py,...,P,. To express it as a GIT quotient, consider its affine
cone W = A(Z) = Spec(kltoy, ..., tml/(P1,..., P:)), where the Pis are homogeneous of
respective degrees d;. We define the diagonal action of k* = G, on A™1 which passes
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to A(Z). We pick the positive character 9 = 1g, € hom(Gy,, Gn,) ~ Z. We recover the
case of example 3.3.1.2.2]

A quasimap to Z is then determined from the invertible sheaf £y. A map from a curve
C to P™ with basepoints is indeed known to be equivalent to the data of a line bundle £
on C with m + 1 sections (so, . .., sm) € I'(C, L&) which only vanish simultaneously
at the basepoints. Such a section gives a map (with basepoints) to Z if its components
respect the defining equations: V1 < i < 1, Pi(sg,...,8m) = 0 € T'(C,£®%). This is
indeed equivalent to a section u of a bundle with fibers isomorphic to A(Z) C A™, by
taking P = C x G, — C to be the trivial k*-fibration, and then the associated bundle
P x¢ A(Z) (since the vanishing of the P;s is unchanged by the diagonal action). We
recover £ as L.

The unstable locus is {0}, so the length £(x) at a point x is simply the order of vanishing
of the section (sg,...,Sn).

3.3.3 Properties of the moduli space of ¢-stable quasimaps
3.3.3.1 Relation to other moduli spaces

It is clear from the definition of stable quasimaps that their moduli stack should be
a substack of the internal mapping stack from the moduli stack of prestable curves.
More precisely, recall the moduli stack 9, of prestable curves of genus g with n
marked points. There is also a moduli stack M, ,([W/G], ) of maps from prestable
curves parameterised by M, to the stack quotient [G/W] whose underlying section
of an associated G-bundle has class 3 € Pic([W/G])".

Let QMap, .(W/5G, B) be the moduli stack parameterising all (not necessarily stable,
or even prestable) quasimaps of genus g with n marked points of class 3. All such
quasimaps are in particular morphisms to the stack quotient, and from boundedness
results of [CKM14] it follows that Q0Map, ,(W/»G, B) C My ([W/G], B) is an open
substack, which is furthermore of finite type over i, ...

Let now Q¢ ,(W/5G, B) be the moduli stack for e-stable quasimaps.

Lemma 3.3.3.1.1. [CKM14, Proposition 7.1.5] The automorphism group of an e-stable quasimap
is finite.

Theorem 3.3.3.1.2. [CKM14, Theorem 7.1.6] The stack Q ,(W /G, B) is a separated DM
stack of finite type, with a natural proper morphism over the aﬁ‘me quotient Spec(R®) = W/G.

Let ‘Bun + 5 M., denote the relative moduli stack of principal G-bundles on the
fibers of the universal curve €y, — My ,, which can be constructed[Wani1] as the
relative mapping stack

%ungn = ﬁom/mg‘n(eig,n, BG x Myn), (3.45)

where BG is the classifying stack [Spec k/G] (for the trivial G-action on Speck). Itis a
smooth Artin stack, locally of finite type over Speck. It has a universal curve with a
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universal G-bundle 5, — €5 ; the relative curve €5 is the pullback of €4, — Mgy
along the forgetful functor y: ‘Bun&n — Myn.

There is a tautological forgetful morphism
u: Q4 (W/3G, B) — Bun, (3.46)

The universal curve 7t: €, — Q¢ ,(W//»G, B) is the pullback of ngn along u, or equi-
valently the pullback of &g, — My, along y o p. It has universal G-bundle B, which
is the pullback of &Bg’n. We also have the associated bundle p: PB; , x¢ W — € and
its universal section u.

3.3.3.2 Perfect obstruction theory
The above discussion naturally defines the complex

B, = (R (R¥om(Ly, O )(1]))

(3-47)

Since u is a section of p, the composition p ou = 1: = gives by |proposition 1.1.1.1.1|
the distinguished triangle

* L] o
wlLp — Lje

€g,n

=0— L = wL1] (3-48)
hence an isomorphism L} ~ u*IL5[1] and thus

E = (R (RHom(w'Ly, Oc, )" =~ (Rr, (u'T3)) . (3-49)

Theorem 3.3.3.2.1. The morphism £}, — 1.3, is a relative obstruction theory, which is perfect
if W only has local complete intersection singularities.

Proof. [CKM14, Theorem 7.1.6, Theorem 4.5.2] ]

Remark 3.3.3.2.2. We can construct a comparison morphism M, (PN, d) — Q: (P, d),
which contracts unstable components to basepoints of corresponding degree.

The comparison morphism is virtually birational[MOP11, Theorem 3], that is its
induced morphism on Chow groups sends virtual fundamental class to virtual funda-
mental class.
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Chapter 4
The lax action

4.1 Brane actions on the moduli spaces of stable maps

4.1.1 Derived enhancement of the moduli space of stable maps
4.1.1.1 oo-operad of moduli stacks and derived enhancement

Construction 4.1.1.1.1 (Derived moduli space of stable maps). By analogy with[corol}
we consider the derived mapping stack RMap,,  (€gng, X X Mg g),
where we recall that the universal curve €y, 3 — My, g coincides with the forget-
ful map My n15 — Mgn . The truncation Homey, |, (Egnp, X X Mgy g) contains the
Zariski open substack Mg ,,(X, B).

Using [corollary 1.2.2.2.12} we then define the derived moduli space of stable maps
RMy (X, B) as the corresponding Zariski open substack of the derived mapping stack:

g9,n,B

Mg,n(xa B) - ﬁommg,n,ﬁ(cg)n\f”x X mg)nxﬁ)

| " l . (4.1)

RMgn(X,B) —— RMapmg’n‘B(%,n,ﬁ,X X Mgnp)

It is a derived enhancement of Mg, (X, f3).

Theorem 4.1.1.1.2. [STV15, discussion after Definition 2.6] The derived stack RM g (X, 3)
is quasi—smooth proper derived Deligne-Mumford stack.

By the results of [section 1.3.2} this derived enhancement induces a virtual structure

sheaf [O%(x B)} on its truncation Mg, (X, ), which by fremark 1.3.1.2.4|can be con-
g,m ™

structed either as the inverse pushforward of the class of the structure sheaf Op 7, —x g)
or from the induced perfect obstruction theory.

Lemma 4.1.1.1.3. The collection My = (Mo p)n,p forms a NE(X)-graded (monochromatic)
oo-operad in derived stacks.

Proof. Since the stacks are smooth, they are flat, and their homotopy products (corres-
ponding locally to derived tensor products) are equivalent to their truncations, the
classical products. This shows that the morphisms defining the classical operad are
also compatible with the requirements for the structure of co-operad. O
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By the same arguments, there is also an co-operad in derived stacks M xp TNEX

well as a morphism of graded co-operads My — M, xp PNEX),

as

Proposition 4.1.1.1.4. The morphisms | [ Monpg — Mon give alax morphism of categorical
oo-operads Mo” MY = MY (or, equivalently, a morphism of NE(X)-graded oo-operads
M xyp TNEX) My = MF).

Proof. Once again, the derived Artin stacks in question are actually smooth classical
stacks. As both structures of the bicategory of spans and of operad only require
taking limits (and not colimits), it is enough to exhibit a lax morphism of operads in a
bicategory. We must study the diagram adapted to the context of the operads of

(pre)stable curves, with O® = Vo@) and P® = M-

MO,m +ny;—2 mo,m +ny,—2

. Zs=
ZW XM ZS ’ EDt(),Tn +ny,—2

(4-2)
The “north-east” homotopy fibre product (which is a fibre product since the stacks are

smooth) is Mo n, XMy n,, while the “south-west” one is ZP™ := M, x Mo, S rym—
Mo, +n,—2, @ prestable (that is, replacing Xon g by Mo g) version of the fibre products
[ I Zp that appeared in the discussion of section 3.2.2.2}

A map ¢y, n, from My, x My, into the (homotopy) fibre product is actually fur-
nished by the commutative square exhibiting 95 — M, asa morphism of operads

(the “mirror image” of the central square in (4.2)), and it is not an equivalence in
6t O

4.1.1.2 Covering of the virtual fibres

As M is an co-operad in derived stacks, in particular, the stack [ [ 9%, s, being the
object of unary operations My (1) = [ | s Mo (1, B), has a structure of monoid object in the
cartesian monoidal category &t induced by the composition (1) x M(1) — Mo (7).
In addition, the operadic compositions (i.e. the gluing of curves) makes the moduli
stacks [ [z 9Mon,p into left and right 90%(1)-modules. Once again, by smoothness, these
structures pass to the inclusion into the co-category 06t.

The moduli stack RX; := ]_[[3 R Mo (X, B) then inherits a structure of monoid object

with RX; xx RX; — RX;, and similarly the RX,, := HB RMon (X, B) are left and right
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modules over it. We shall also write RX,, g := RM (X, ) (note that we do not specify
the genus as it is fixed to zero).
We can then consider the two-sided bar complex of these modules:

e RX,. x RX; x RX; x RX, RX,. x RX; x RX,, ¢ RX,, x RX;,
[ % 1 >>§ 2;? 2>>§ 2 2 1 >)§ 2;2 2 1 >>§ 2

— [ e 5 H RXm,ﬁo ;z]RXZ,Ih ?Rxnz,ﬁz ﬁ H Rxm,ﬁo éRXﬂz,ﬁw ]

BENE(X), BENE(X),

Bo+B1+P2=P Bo+B1=R
(4.3)
As inparagraph 3.2.2.2.2} define RZg as the (homotopy) pullback
RZB _,—> RMO,H]%"HZ*Z(X) B) - RXH1+11272,[5
h
l l : (4-4)

MO,T‘L] X Mo,nz > MO,‘I’L]-H’Lz—Z

Put n :== n; + n, — 2. Note that the notation is consistent as to(RZp) = (Mon, X
Mon,) X o to(RXn,p) = (Mo, X Mon,) X Mo Xn,p = Zg. Then the semi-simplicial
object obtained in is naturally augmented by a map to [ [ RZg.

Fixnow a 3 € NE(X) and consider the (homotopy) pullback along the open inclusion
RMO,m +n2—2(x) B) = Rxn1+nz—2,|’5 - RXTL] +n,—2 — ]_[[3/ RMO,m +n2—2(X) [3/)/ which is
informally presented as:

) 2 H RXn,,80 ;szvﬁl éRanﬁz : H RXn1,80 éRanyfﬁ :

Bo+B1+PB2=P Bo+B1=p
(4.5)
I order to save space, we write
RXnpr = [ RXnpo XRXzp X X RXgp X RXnp 1 (4.6)
S Bi=h
so that (4.5) provides a semi-simplicial set RX;, ;3. augmented to RZg.
Theorem 4.1.1.2.1. [MR18b, Theorem 5.3.11] The morphism lim RX, g — RZp is an
equivalence.
Property 4.1.1.2.2. [MR18b, Theorem 5.4.2, (2), (3), (5)]
vir —_ vir vir
¢ [OMQW (X,ﬁl)ngz,nz<x,rsz)] = [ Mo (x,rm] X [Omgz,nz(x,ﬁz)}
vir — Al vir .
* [ow,n] (x,mxXMgT,nz(x,rsz)} =A [OM%M (x,rmegz,nz(x,rszJ}’ where A: X — X x X

is the diagonal morphism and A' as inparagraph 3.2.2.2.4|(replacing X n p by its derived
enhancement).
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* With notation as in (3.26) (replacing Zg and X, g by their derived enhancements), we
have (note that the genus is implicitly zero)

D W DO s ke = @ O8] @)

>0 2 i Bi=p

Proof. The product formula is simply the Kiinneth formula. The other two are obtained
by base-change along the diagrams defining the fibred products, and for from
the fact that RZg is the colimit of RX,, 1n, [g)e, SO that the G-class of its structure sheaf
is the alternating sum of those of the RX;,, n,,g]- O

Remark 4.1.1.2.3. These properties are part of the axioms for an orientation in G-theory.
In fact, [MR18b, Theorem 5.4.2] shows that the virtual sheaf satisfies all the orientation
axioms.

Corollary 4.1.1.2.4. The formula holds in Go(to(RZp)) = Go(Zp). O

Remark 4.1.1.2.5. The above discussion adds weight to the idea of remark 3.2.2.2.6} the
simplicial object RX,, (3. may be seen as an effective hypercovering of RZg, consisting
of the higher intersections of divisors. Then the K-theoretic virtual sheaf will remember
how the divisors are glued together along this covering, while the intersection theoretic
virtual class only sees the discrete cover RX,, g0 = RZg.

4.1.2 From the brane action to the Gromov-Witten action
4.1.2.1 Stable sub-action

Property 4.1.2.1.1. The NE(X)-graded oco-operad 9 is not coherent.

Proof. Combining |eq. (2.30)and construction 2.2.2.2.2} it follows that an operad in
derived stacks is coherent if and only if, for every n, m, every derived stack Z and
every pair of “operations” 0: Z — Oy, 1: Z — Oy, classifying C; = Z x¢, Onq1,Cr =
Z X9, Omi, the induced maps C, 7.0, Cr = Cgo.r are equivalences. For the graded
case we only need to check coherence at the level of the underlying non-graded oo-
operad.

In our case, let C, C. be two prestable curves with respectively n+1 and m+1 marked
points. The curve Cg,, is obtained by gluing marked points, so it is the pushout (of
underived schemes) C; Hspeck Cr. On the other hand, 9(2) = M 35— is contractible,
so we must compare with the (homotopy) pushout of derived stacks C, I1? ., C-. The

Spec k
universal property of the homotopy pushout gives a canonical arrow 0: C, I8 ., Cc —

Speck
Co Hspeck Cr, which is generally not an equivalence as the inclusion of schemes into

stacks, and thus into derived stacks, does not commute with pushouts. O

Although it is not coherent, 90ty is still reduced, so it induces a lax brane action on
9M,(0,0) = My 3. By|corollary 2.2.2.2.7| applying RMap(—, X) gives a lax 9 -algebra
structure on X.




Proposition 4.1.2.1.2. [MR18a, Corollary 3.1.8] After applying RMap(—, X), the morphism 0
becomes an equivalence, and there is a (non-lax) 9§ -algebra structure on X (in correspondences),
given by the correspondences

RM&p/DﬁO‘n+],B (gﬁov“"‘zvﬁ) X X DﬁO,n—&-],B)

X" x moyn_,_])ﬁ / \ X

We wish to restrict these correspondences to the stable derived moduli stack RM, (X, B) C
RMap on, (Monp, X x Monp), as it is the derived stack responsible for the virtual
phenomena of section 4.1.1.2}

Recall from (2.38) that the brane action on X is classified by the cocartesian fibration
in spaces

(4.8)

B (905, X) — J Tro(Eno(M,))® Xoeer Fun([1,064)F. (4.9)

We will thus formulate the stable sub-action as a sub-co-category B (911, X)s®!
B*St(91,, X), such that the fibre of the restriction of the above fibration over

(c=(01y...,00): Z— Tw(Eno(NMy))(n),u: Y — Z) (4.10)
is the subspace of the mapping space consisting of morphisms such that for each 1,
the map Y — RMap , <C(yi = Z Xy, g Moni+1,p9 X X Z) factors through the open

substack RMapjt;l(C oy X X Z) classifying those families of maps sending the funda-
mental classes of the fibres of C;, to 3; € A;X, ergo stable maps.

Theorem 4.1.2.1.3. [MR184a} Proposition 3.2.1] The morphism
B! (9, X)* — J Tro(Enb(M,))® xoser Fun((1,064) (4-11)

is a cocartesian fibration in spaces, defining a map of NE(X)-graded oco-operads in correspond-
ences in derived stacks MF — ((FT,-)*) " xp PN,

4.1.2.2 Lax action on the stable moduli spaces

Finally, we must see that the composition of the brane action on X with the lax morphism
of categorical co-operads M," My = M gives a lax action of M," on X.

Theorem 4.1.2.2.1. [MR18a, Theorem 3.3.1] There is a lax map of categorical co-operads in
derived stacks My~ — Span(T7), informally sending each family of curves o2 Z — Mo to
the relative correspondence

Xt X Z «—— [T RMon(X,B) xz557Z ——= X x Z . (4.12)

<

z
Explicitly, the lax character of the morphism is given by the following version of (2.15):
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QL

[T RMon, (X, B1) x RMon, (X, B2) ¢ [T BMow, (X, B1) X RMop, (X, B2)

BENE(X) e BENE(X)
B1+B2=P B1+B2=B
Stab x Stab Kev/‘
MO,TH X MO,TIZ Xn1 X an

'Ivv..cﬂ]’nz \

1 In, ><AX><ILn2
Mon, X Mo, X1 x X x X2
\“2 I, X#x1n,
S —— 2
MO,eranZ Xmitn2
Stab ev

h

v
[ Rz » T TR Momym 20X, B)
B B

(4.13)



The morphism cy, n, is the coproduct of the canonical morphisms RX; g — Zg =
lim RX, p given by [theorem 4.1.1.2.1} which is not an equivalence. Hence we deduce
that the lax character of the action is the reason for the additional terms appearing in
the G-theoretic quantum product of (3.22).

Remark 4.1.2.2.2. By [MR18a, Proposition 3.3.3], the Gromov-Witten action also admits
a NE(X)-graded refinement.

4.2 Categorification of Gromov-Witten invariants
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Appendix A
Higher category theory

A.1 Quasi-categories

A.1.1 Properties of quasi-categories
A.1.1.1 Quasi-categories and co-functors

Definition A.1.1.1.1 (Quasi-category). A quasi-category is a simplicial set € such that
any inner horn Al — €,0 < i < n in € admits an extension to a simplex A™ — € along
the inclusion:
AT ¢
A

j . (A1)

3
A

The (simplicially enriched) category Q¢at of quasi-categories is the full subcategory of
sGet spanned by the quasi-categories; in other words a morphism of quasi-categories,
called an co-functor, is simply a map of simplicial sets between quasi-categories.

Proposition A.1.1.1.2. Let € be a quasi-category, and 1 be any simplicial set. The mapping
simplicial set Map (I, €) is a quasi-category. In particular, given any pair of quasi-categories,
the co-functors between them form a quasi-category.

Example A1.1.1.3. ¢ [Lurog| Proposition 1.1.2.2] If € is a category, its nerve N(¢&),
defined by hom(A™, N(€),) = homey([n], €) is a quasi-category; in fact the re-
quired extensions are all unique.

¢ A Kan complex is a quasi-category, which we also refer to as co-groupoid (or
space). The quasi-category of spaces (defined later) is denoted &.

A vertex, that is a 0-simplex, in a quasi-category € is called an object of €. An edge,
that is a T1-simplex, is called a morphism. An inner 2-horn A? — € is identified with a
pair of composable morphisms. By [Lurog, Corollary 2.3.2.2, Remark 2.3.2.3], although
composition of a string of morphisms in a quasi-category is not uniquely defined, it is
well-defined up to a contractible space of choices.

A quasi-category ¢ € QCat has an associated homotopy category Ho € € Cat. It
can be more easily constructed through a different model for co-categories. We will
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see in[subsubsection A.1.2.2|that there is an adjunction (in fact a Quillen equivalence)
C: sCat = Caty: Ny between simplicial sets and simplicially enriched category, such
that[Lurog, Proposition 1.1.5.10] for any simplicially enriched category 9t which is
locally fibrant (i.e. whose mapping simplicial sets are Kan complexes) the coherent
nerve N, is a quasi-category. Thus to any quasi-category corresponds a simplically
enriched category C[¢] and, for any pair of objects X,Y € ¢, there is a simplicial
set Map(X,Y), called the mapping space from X to Y in €. We can simply define
Ho € = myCI[¢], that is homy, ¢ (X, Y) = 1o Map,(X, Y). We may also define a category
h¢ enriched in the homotopy category of spaces Ho &, the category of homotopy types,
by taking the hom-sets to be the homotopy types of the mapping spaces: homp¢(X,Y) =
[Map (X, Y)].

An oo-functor is said to be a categorical equivalence if the simplicial functors it
induces by C is a Dwyer—Kan equivalence of simplicially enriched categories, that
is essentially surjective on the homotopy categories and inducing weak homotopy
equivalences on the mapping spaces.

Definition A.1.1.1.4 (Equivalences). A morphism f in a quasi-category ¢ is an equi-
valence if its image in h¢ is an isomorphism.

Example A.1.1.1.5 (Simplicial localisation). Let ¢ be a quasi-category and W C ¢, be
a set of morphisms of €. A localisation of ¢ at )V is a quasi-category ¢W'] with an
co-functor £: ¢ — C[W ] sending the morphisms in W to equivalences in ew,
such that for any quasi-category ®, the induced map Fun(€WV~',D) — Fun(¢, D) is
a categorical equivalence on the full sub-quasi-category of functors € — © which send
morphisms in W to equivalences. A localisation is determined up to equivalence.

Example A.1.1.1.6 (co-localisation of model categories). Let 91 be a category with a
model structure whose set of weak equivalences is VW (more generally, we only need
the datum of the relative category (901, W)). Its co-localisation is the quasi-category
N (971) (W], with homotopy category the homotopy category of the model structure
on M. The construction can also be adapted in a straightforward manner to coherent
nerves of simplicial model categories, in which case an existence result is given from
an explicit construction. This gives a good way of obtaining quasi-categories from
more easily understood relative categories.

A.1.1.2 Joins of simplicial sets

In order to have a theory of limits in quasi-categories, we will develop a notion of cones
over a diagram. To that end, we need to have a way of freely adding universal vertices
to a simplicial set, which is realised by the join operation.

Construction A.1.1.2.1 (Day convolution). Let (€, ®,1) be a monoidal category. We
define an external tensor product — X —: Get® x Set® — Get™* by (FX G)(c1,c2) =
F(c1) x G(cz). Then the Day convolution of F and G is defined as the left Kan extension
FxG:C = Getof FRG: € x € — Getalong —®@ —: € x € — C.

82



Equivalently, writing V: € — Get® for the Yoneda embedding, the functor — *
—: Get® x Get® — Set® is the left Kan extension of Yo (— X —): € x € — € — Set®
along Y x YV: € x € — Set® x Set.

Example A.1.1.2.2 (Simplicial sets). Let A, denote the augmented simplex category,
with the added initial object [-1] = (), and let sGet, = Set®”™ denote the category
of augmented simplicial sets. The sum n] @ [m] = [n + m + 1] endows A, with a
monoidal structure, and hence sGet, with the Day monoidal structure .

We have[Rie14, §17.1] that for any augmented simplicial sets X, and Y,, the aug-
mentation of the Day productis (Xe * Yo)_1 = X_; x Y_;. In particular, if X and Y are
ordinary simplicial sets given the trivial augmentation, then so is their Day product. It
follows that there is an induced monoidal product on s&et, also denoted «, and called
the join of simplicial sets.

Explicitly, we have (X¢ * Yo)n = X, U Y, U U:o] Xi X Yn_1-4.

Property A.1.1.2.3. 1. [Lurog, Proposition 1.2.8.3] The join of two quasi-categories is
again a quasi-category.

2. If €and D are two categories, then N(€)x N (D) = N(CxD) where the join of categories
¢ x D is the category given by the disjoint union of the two categories € and ©, adding a
unique arrow from any object of the first category € to any of the second D.

Remark A.1.1.2.4. In fact the sum [n] @ [m] of objects of A is their join of categories (seen
as ordered sets).

Example A.1.1.2.5 (Cone categories). Let 7: J — € be an oo-functor between quasi-
categories. The cone over-category ¢, r is defined as the simplicial set whose set
of n-simplexes is the subset homz(A™ x J, €) of morphisms whose restriction to J
equals F (it is a quasi-category by[Lurog, Proposition 1.2.9.3]). It verifies the universal
property[Lurog, Proposition 1.2.9.2] that, for any simplicial set X, hom(X,¢,r) =
hom £ (X«3J; €). Replacing X« J by Jx X, we similarly define the cocone under-category
Q:]:/D.

In particular, we denote J9 = A° x J the quasi-category of left cones of J, and
J” = J x A° the quasi-category of right cones. We call cone point the vertex coming
from A°. By definition, an object in €, (resp. in €x)) is an co-functor J° — € (resp.
J> — €) extending F, that is a left (resp. right) cone over (resp. under) the diagram F
in €.

Remark A.1.1.2.6 (Terminology). Despite the name it often receives, the quasi-category
¢,/ r expresses a different notion from the usual slice (or comma) categories (¢ | F)
of objects of a category € over the image of F. Indeed, a cone with cone point S is a
natural transformations from the constant functor * (with value the singleton *) to
h{ :=hom(S, F—) and so the category of cones would be expressed as (x | h{).

Example A.1.1.2.7 (Twisted arrow category). Consider the functor e: A — A given on
objects (ordered sets seen as categories) by [n] ~~ [n] x P = [2n + 1] (where * is
the join of categories). For any simplicial set &,, its simplicial set of twisted arrows
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is €€, = €, 0 €. If € is a quasi-category, Tw(C) = €*C is called the twisted arrows
quasi-category of €.

From the definition, hom(A™, Tw(€)) = hom(A™ % (A™)?, €). Explicitly, we have
Tw (), = &1 and the faces d and degeneracies § are given in terms of the faces d
and degeneracies s of € by di(x) = dn_idni14; and 35(x) = sn—jSn+1+j(x). The objects of
T (€) are arrows of €, and a morphism from f to g in Tt (&) is a sequence - LENER

- M, . whose composite is homotopic to f, that is a factorisation (up to homotopy) of f
through g, which we usually represent as a (homotopy) commutative square.

The inclusions [n], (NP C [n] x [n]°" determine morphisms T (C) — €, Tw(C) —
¢°P and thus a morphism Tt (C) — € x €°P. By [Lur12, Proposition 5.2.1.3], Tt (&) is
a quasi-category if € is one (in fact Tro(¢€) — &€ x €°P is an inner fibration).

A.1.2 Comparison with other models for (oo, 1)-categories
A.1.2.1 Model-categorical tools for higher categories

A.1.2.1.1 Reedy model structures

Definition A.1.2.1.1.1 (Reedy category). A Reedy category is a category ¢ with a
function d: obj€ — N and the data of two wide subcategories ¢ and ¢ whose
non-identity morphisms respectively (strictly) raise and lower degree, and such that
every arrow factors as the composite of an arrow of ¢ followed by one of ¢

Remark A.1.2.1.1.2. 1. A Reedy category must be skeletal with no non-trivial auto-
morphism.

2. The canonical factorisation of a map by ¢ > and € is also the unique factorisation
through an object of minimal degree.

Theorem A.1.2.1.1.3 (Reedy model structure). [Rie14, Theorem 14.2.7], [Lurog, Proposi-
tion A.2.9.19] Let 9 be a model category, and let J be a Reedy category. There exists a model
structure, called the Reedy model structure, on Fun(J, ) whose weak equivalences are the
pointwise weak equivalences.

We now describe the fibrations and cofibrations of this model structure. We first
introduce the following notations: for any d € N, we write J_4 for the full subcategory
whose objects have degree lesser than d, and 3? 4 for the subcategory whose morphisms
are those of 3.

Definition A.1.2.1.1.4 (Latching and matching). Let D: J — 91 be a diagram.
For any i € J, we define the i-latching object L'D as the colimit of the composite

functor (deegi)/i 32 m.

The i-matching object M;D is similarly defined as the limit of (3<\deg Jy— 73 2, .
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This is equivalently the colimit (resp. limit) of D weighted by the subfunctor of
hom(—,1) (resp. of hom(i, —)) generated by the maps whose Reedy factorisation has
the minimal degree object of degree lesser than deg(i).

Construction A.1.2.1.1.5. For any i € J, the object D(i) € 91 tautologically receives
morphisms from the images of all objects of (Jée ¢1)/i with the appropriate functorial
properties defining a cocone under the functor above, so there is a canonical morphism
l;: LI'D — D(i), called the i-latching map. There is, for the same reasons, a canonical
i-matching map m;: D(i) — M;D.

Let f: D — £ be a morphism in Fun(J, ). The relative i-latching and matching
maps are defined by the commutative squares

I'D —— D) D) —— M{D
l l and l l (A.2)
L —— &(1) E({1) —— M€

which give canonical arrows L'D 1T D(i) — £(i) and D(i) — E(1) Xm,e MyD.

Definition A.1.2.1.1.6 (Reedy (co)fibrations). The arrow f is a Reedy cofibration if for
every i € J the relative i-latching map is a cofibration in 91, and it is a Reedy fibration
if every relative matching map is a fibration in 1.

The content of theorem A.1.2.1.1.3|is then that the Reedy (co)fibrations are the
(co)fibrations in the model category Fun(J, 91).

A.1.2.1.2 Left Bousfield localisation

Definition A.1.2.1.2.1 (Left Bousfield localisation). Let (93t, W, F, C) be a closed model
category. A left Bousfield localisation of the model structure (W, F,(C) is a model
structure (W', F',C’) such that ' = C and W’ D W (and hence 7' C F is determined
in the only way posible).

Suppose now 9 is a left proper cofibrantly generated model category. If the left
Boustield localisation exists, then its weak equivalences can be described more geo-
metrically as those that are “local” with respect to a certain class of cofibrations.

Definition A.1.2.1.2.2 (Local equivalences). Let 91 be a simplicial model category. Let
R Map: MP x M — sSet denote the derived mapping space bifunctor (modelled
for example by using cofibrant and fibrant replacements). Let S be a collection of
morphisms of 9.

1. An object M € 9t is S-local if, for every f € §, the induced map of simplicial sets
R Map(f, Z) is weak homotopy equivalence of simplicial sets.

2. A morphism f in 91 is an S-local equivalence if, for every S-local object M € 901,
the induced map of simplicial sets R Map(f, M) is a weak homotopy equivalence.
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It is clear that any weak equivalence is an S-local equivalence. Then we can define a
left Bousfield localisation at the class of S-local equivalences.

The result is that any left Bousfield localisation is of this form for a certain collection
S of morphisms; in fact any choice of generating acyclic cofibrations of the localised
structure[Lurog, Proposition A.3.7.4]. This even provides an existence result.

Proposition A.1.2.1.2.3 (Existence of localisation). [Rie14, Digression 12.3.3], [Lurog,
Proposition A.3.7.3] Suppose I is a left proper combinatorial (i.e.presentable and cofibrantly
generated) simplicial model category, and S be any set of cofibrations. Then the left Bousfield
localisation at the class of S-local equivalences exists and is a left proper combinatorial simplicial
model category. Furthermore, the fibrant objects are the S-local objects which are fibrant in the
original model structure.

Example A.1.2.1.2.4 (Joyal model structure for quasi-categories). Given a model category
with a fixed class of cofibrations, the trivial fibrations (and thus the model structure)
are entirely determined by the choice of fibrant objects in the category. Hence we can
define (if it does exist) a model structure on sSet by requiring the cofibrations to be
those from the Kan—-Quillen model structure, that is the injections of simplicial sets,
and the fibrant (and thus fibrant-cofibrant) objects to be the quasi-categories.

Recall that a categorical equivalence is a morphism of simplicial sets inducing a weak
equivalence (in the Bergner model structure) of the associated simplicially enriched
category. The model structure described above, called the Joyal model structure for
quasi-categories, is a left Bousfield localisation of the Kan—Quillen model structure on
simplicial sets at the class of categorical equivalences.

A.1.2.2 Simplicial categories and the homotopy coherent nerve

Definition A.1.2.2.1 (Simplicial category). To set notations, we call simplicially en-
riched category a category enriched in the closed monoidal category (sSet, x, A°) of
simplicial sets. We recall that a simplicial object in the category €at, that is a functor
C,: A — Cat, gives a simplicially enriched category € if and only if it has constant
object sets, that is obj&; = obj¢; for all i,j € A. The correspondence is given by
hom¢ (X, Y)s = homg, (X, Y).

To avoid confusion, we will not use the phrase “simplicial category” to refer to either
simplicially enriched categories or simplicial objects in Cat.

Construction A.1.2.2.2 (Homotopy coherence). Let Q denote the category of reflexive
directed graphs. Then the forgetful functor ¢/: €at — Q (which forgets composition)
admits a left adjoint 7: Q — Cat, forming the free category on a given graph. The
adjunction induces a comonad C = FU on €at, and thus a simplicial resolution functor
[Cle = (C**): €at — s€at. Note that, since both U/ and F induce the identity on objects,
this is also the case for all components of [C],, which can thus be interpreted as a functor
[C]le(—) to simplicially enriched categories.

Let 901 be a simplicially enriched category, and let J be an indexing category. We
define a homotopy coherent diagram of shape J in 9t to be a functor [C],T — 9.
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For [n] € A (and A" € sGet), set CA™ = [C],[n], where [n] is seen as a category with
its ordering. This defines a cosimplicial simplicially enriched category CA®*: A — sCat.
Since, by the density theorem, a simplicial set X, can be expressed as a colimit, we

set CX, =lim, CA" This is equivalent to defining the functor C: s&et — sCat as

the left Kan extension of CA* = [Cl,(—) R A — sCat along the Yoneda embedding.

We now define tautologically the right adjoint N : s€at — sSet of C by NA (M), =
hom,e (A™, NaA (D)) = hom,eq (CA™, OMN), so that n-simplices of N (1) are the strings
of n “homotopy composable” morphisms in 9t. We call this functor the homotopy
coherent nerve.

Lemma A.1.2.2.3 (Bergner model structure). [Rie14) Theorem 16.1.2] There exists a cofibrantly
generated model structure on s€at whose weak equivalences are the simplicially enriched func-
tors inducing essentially surjective functors on the homotopy categories and weak equivalences
of mapping spaces, and whose fibrant objects are the simplicially enriched categories whose
mapping spaces are Kan complexes.

Proposition A.1.2.2.4. The cosimplicial simplicially enriched category C[A°®] is a cofibrant
replacement in the Reedy model structure on Fun(A, s€at) for [e]: A — s€at which sees [n]
as a discrete simplicially enriched category.

Theorem A.1.2.2.5. [Lurog, p. 2.2] The adjunction C 4 N induces a Quillen equivalence
between the Joyal model structure (having quasicategories as fibrant objects) and the Bergner
model structure (having locally Kan simplicially enriched categories as fibrant objects).

Example A.1.2.2.6 (Dwyer—Kan localisation). Let 91 be a simplicial model category.
Then Na (M) =~ NA(IM) W the co-categorical localisation of the relative cat-
egory (9, W) is given by the homotopy coherent nerve of the full subcategory on
tibrant—cofibrant objects.

Example A.1.2.2.7 (The category of spaces). Consider the category sGet (cartesian closed,
as thus self-enriched) with its standard Kan model structure, whose weak equivalences
are the weak homotopy equivalences of simplicial sets. We can then define the oco-
category of spaces, or equivalently of co-groupoids, as & = Nu(sGet) W],

A.1.2.3 Segal conditions for higher categories

Endow sGet with its usual Kan—Quillen model structure, and endow the category
of bisimplicial sets 5*Get = 55Get = sGet*” with the corresponding Reedy model
structure (for the canonical Reedy category structure on AF).

Definition A.1.2.3.1 (Segal space). A bisimplicial set X, , is a Segal space if for every
m,n > 1, the maps Xyime — Xne X%, . Xin,e are weak equivalences of simplicial sets.
Equivalently, for every k > 2, the Segal map Xy. — Xj. XX 7 XXy Xi,e is @ weak
equivalence of simplicial sets.

If X, o is Reedy fibrant, the homotopy products can be taken to be the actual products.
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Construction A.1.2.3.2 (Category theory in a Segal space). Let X, , be a Segal space.
The simplicial set X, is called the space of objects of X, ., while X; , is the space of
arrows and Xy, for k > 1 is the space of sequences of k composable morphisms. If
X,y € Xo are two objects, the mapping space from x toy is {x} xx, , X1« Xx, , {y}. Hence
the homotopy category is seen easily by taking 71, of the mapping spaces. We call X7,
the subspace of X; , given by the components sent to isomorphisms in the homotopy
category. The degeneracy map s: Xoo. — X, which sends x to its identity morphism,
factors through X7 ..

Definition A.1.2.3.3 (Complete Segal space). A complete Segal space is a Reedy fibrant
Segal space such that the map Xo. — X7, is a weak equivalence of simplicial sets.

Definition A.1.2.3.4 (Segal category). A Segal category is a bisimplicial set X, , such
that X, is a discrete simplicial set and for each k > 2 the Segal map Xy . — Xj ¢ Xx,,

- Xx,. X1, 15 @ weak equivalence of simplicial sets.

Theorem A.1.2.3.5. [Ber1o]

* [Ber1io, Theorem 4.4] There is a model structure on s*Set whose equivalences are the
Dwyer—Kan equivalences, cofibrations the monomorphisms, and fibrant objects the com-
plete Segal spaces.

* [Ber1o, Theorem 5.3] There is a model structure on the full subcategory of s*Set spanned
by bisimplicial sets with discrete simplicial set of 0-simplices, whose cofibrations are the
monomorphisms, and whose fibrant objects are the Segal categories.

* [Ber1o, Theorem 7.1, Theorem | These two model structures are Quillen equivalent, and
they are also Quillen equivalent to the Joyal model structure on sGet.

Remark A.1.2.3.6. By a theorem of Toén, any theory of co-category satisfying a certain
list of axioms must give a model category Quillen equivalent to complete Segal spaces.

Construction A.1.2.3.7 (n-fold complete Segal spaces). Although the use of a model-
categorical presentation of & is needed to define co-categories as complete Segal spaces,
the construction could in fact be performed for simplicial objects in the co-category &;
in fact a complete Segal object in an co-category € gives a notion of category object in
<.

Consider now a simplicial object in €at,, that is an co-functor X,: A’ — €at,. Then
we say that X, is a 2-fold complete Segal space, provided that it satisfies the following
consditions:

¢ the oco-category X, is an co-groupoid;

e for any n,m > 0, the oo-category X, is equivalent to the homotopy fibred
product X, Xx, Xy,

¢ the factorisation Xy — X; — X; induces an equivalence X, ~ X3, where X7 is the
2-full sub-co-category of X; containing only the invertible 1-morphisms of X, ..

This construction can be generalised inductively to define n-fold complete Segal
spaces, giving a model for (oo, n)-categories.
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A.2 Presheaves on co-categories

From now on we consider co-categories as given independently of any model chosen; in
particular any 1-category defines a particular case of co-category and will be considered
as such without taking a nerve. This means that results coming from any model for
higher categories can be used for our co-categories.

In particular (to set notation) there is an co-category Cat,, of co-categories, and a full
sub-co-category & of spaces or co-groupoids. Given any pair of parallel co-functors
F,G: € = D, there is a mapping space Map,,, (F,G) € & which is the underlying
space of the co-category Fun(F,G).

A.2.1 oco-functors and (homotopy) limits
A.2.1.1 Universal objects and (co)limits

The following transports directly from classical category theory to the higher context.
Let ¢ be an co-category. An object Z € € is said to be initial (respectively final) if for
any object C € € the space Map(Z, C) (resp. Map(C, Z)) is contractible.

Definition A.2.1.1.1 (Limit). Let 7: J — € be an co-functor. A limit of F is an initial
object of €+ (a universal cone over F). A colimit of F is a final object of €/, (a
universal cocone under F). We let Jim . 7 denote the limit of # and lim . F denote its
colimit.

We see that a limit of F is given by a functor 3% — € whose restriction is F; we will
say that 7 has an extension to a colimit diagram.

If the oo-categories are obtained from model categories, the homotopy (co)limits
actually have the universal property of their co-categorical enhancements. This is
shown by Lurie in the language of quasi-categories.

Theorem A.2.1.1.2. [Lurog, Theorem 4.2.4.1] Let F: J — € be a simplicial functor between
simplicial model categories. Let C be an object of €. Then C = Rlim F if and only if
Na(F): Na(T) = Na(€) admits an extension to a colimit diagram Na(J)” — Na(<).

Example A.2.1.1.3 (Ends and coends). Let ¢, ® be co-categories, and let 7 be an oo-
functor €x¢°? — B. The end and coend of F are the limit and colimit of its composition
with the canonical functor Tt (€) — € x €°P, which we denote as @nim( o F and

h—n}im(@) I

We can give an alternate characterisation of limits, as verifying a universal property,
using the Grothendieck construction developed in subsubsection A.2.1.2|

Construction A.2.1.1.4 (Adjoint functors). Let F: € — © be a functor; it be equivalently
be seen as a morphism in the co-category €at,,, so as an co-functor [1] — €at,,, where
[1] is the interval co-category (e.g. A' in the model of quasi-categories). Then it also
corresponds to a cocartesian fibration [ F — [1]. If it is also a bifibration, we say that
F is a left adjoint, whose right adjoint is given by the diagram [1] — C€at., obtained
from the cartesian fibration f F — [1].



Hence the data of an adjunction between ¢ and © is a bifibration A — [1] with
equivalences 20y ~ € and 2; ~ D.

Property A.2.1.1.5 (Behaviour of adjoints). 1. [Lurog, Lemma 5.2.2.10] An adjunction
F: € 2 D: G between oo-categories induces a &-adjunction hF: h€ = h®: hG
between their G-enriched homotopy categories (and thus also an adjunction between the
homotopy categories).

2. [Lurog, Proposition 5.2.3.5] Let F: € <=2 ©: G be an adjunction of co-functors. Then F
preserves all the colimits of € and G preserves all the limits of .

Definition A.2.1.1.6 (Kan extensions). Let € be an co-category, and let £: J — J be an
oo-functor, inducing £*: Fun(J, €) — Fun(J, €). An oco-functor of left Kan extension
along K, denoted Lany, (resp. of right Kan extension, denoted Rany) is a left (resp.
right) adjoint to C*.

If 3 = *is the terminal co-category, and K is the unique functor, the if € is cocomplete
(é)esp. complete), we have Lanc = lim: §un(J, €) — & (resp. Ranc = lim: Jun(J,&) —

A.2.1.2 Cartesian fibrations and the Grothendieck construction

Remark A.2.1.2.1 (Tensors and cotensors on Cat,,). Here we simply give as motivation a
generalisation of the phenomenon from enriched categories, without delving into the
theory of enriched oco-categories. Recall (see e.g [Rie14, §3.7, 4.1]) that a U-enriched
category € is said to be tensored and cotensored if there are U-adjunctions

hom, (v ® ¢, d) = homy(v,hom(c,d)) = hom(c, d"). (A.3)

In that case, given functors F: J°° — U and G: J — €, we can define their functor
tensor product 7 ®; 3G as the coend of 7 —®G—. Similarly, the functor cotensor product
of F:J = Yand G: J — Cistheend of (G—)".

The co-category Cat,, has a closed monoidal product given by its cartesian product.
Let € be an oco-category, and consider the co-category Cat., ¢ (for example € = x,
and Cat,, /¢ = Cat,,). This is an co-category enriched over Cat,,, and in fact tensored
and cotensored, with tensors ® x & — € and cotensors Fun(®, §) (for ® € €at,, and
¢, 3§ € Caty se).

Let ¢ be an oco-category. The assignments ¢ ~ €. and ¢ ~ €., define co-functors
Cle: € = Caty, /e and €, 1 CP — Caty, j¢.

Construction A.2.1.2.2 (Grothendieck construction). Let € be an co-category and let
F: €P — Cat, be an co-functor. The Grothendieck construction for F is the functor
tensor product

-

J F = 1lim (€/4 X F) € Cate se. (A.4)
¢ Tro(€)
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If F: € — Caty, the Grothendieck construction for F is the functor tensor product

J F = ﬂ (Q:./ x F) € Q:afoo’/q. (A5)
¢ Tio(€)

Remark A.2.1.2.3 (Interpretation). Following [GHN15], the functor tensor products
appearing in the definition of the Grothendieck construction, colimits of 7 weighted by
¢/e (When F is contravariant) and &,, (when F is covariant), can be seen as respectively
oplax and lax colimits of F. Indeed[Maz15b], while a colimit of a (covariant) functor 7
could be interpreted as the co-category obtained from the union of the 7(C),C € ¢
by adding equivalences S ~ (F¢)(S) for every S € F(C) and every ¢: C — C/, a
lax colimit takes into account the bicategorical aspect by only adding (non-invertible)
morphisms ¢.: S — (F)S.

Definition A.2.1.2.4 ((Co)Cartesian fibrations). Let P: § — € be an co-functor.

¢ A morphism ¢: & — 1 in §, lifting P& = X Po=, Y = Py in ¢, is P-cartesian
if the canonical map §/z — §/y Xe¢,, €)x it induces by postcomposition is an

equivalence. We also call (&, ¢) an inverse image of 1\ by f, written f*{» N V.

Dually, ¢ is P-cocartesian if the map §y, — ¢/ X¢,, &y induced by precom-
position is an equivalence. We say that 1\ is a direct image of & by f, written

f.&.

* The co-functor P is a cartesian fibration if every morphism of € admits an inverse
image for every object of § lifting its target.

Dually, P is a cocartesian fibration if every morphism of € induces a direct image
for every object of § lifting its source.

Remark A.2.1.2.5 (Equivalence with the quasi-categorical definition). An inner fibration
is a map of simplicial sets having the right lifting property against all inner horn
inclusions. It follows that if the target of an inner fibration is a quasi-category, so
is its source (an inner fibration over a quasi-categories can be seen as a “bundle of
quasi-categories”).

Let p: F — C be an inner fibration of simplicial sets. An edge ¢ € F;, seen rather as
$: A" — F, is p-cartesian if Foyy — Fjo(1) X, 1), Capir) is a trivial inner fibration. As
before, we say that p is a cartesian fibration of simplicial sets if any edge of C and any
vertex of F lifting its target give rise to a cartesian lift. We define dually the cocartesian
tibrations of simplicial sets.

If an inner fibration between quasi-categories presents a (co)cartesian fibration, then
it is a (co)cartesian fibration of simplicial sets[Maz15a, Corollary 3.4].

Theorem A.2.1.2.6 (Straightening and unstraightening). [GHN15, Theorem 7.41[Lurog,
Theorem 3.2.0.1]

e Forany F: €% — Caty, the co-category [, F is cartesian over €.

For any F: € — Cate, the oco-category [ F is cocartesian over €.
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* The co-functor [,: Fun(CP, Caty,) — Catl ) admits a left adjoint, called the straight-
ening functor, which induces an equivalence of co-categories.

Similarly [ Fun(€, Caty,) — CatdSy admits a quasi-inverse.

A.2.1.3 The Yoneda embedding

Definition A.2.1.3.1 (Prestack). Let € be an co-category. The co-category of presheaves
of spaces or prestacks on € is PShH() = Fun(CP, &).

Construction A.2.1.3.2. Let € be an co-category. Since Tt (¢€) — € x € is a cartesian
fibration in spaces, we can consider the corresponding presheaf €°? x € — &. Using
the inernal homs of the cartesian product on Cat,,, this is equivalent to an co-functor
V: € — Fun(€P, &) = PGSH(C), called the Yoneda embedding.

Proposition A.2.1.3.3. [Lur12, Proposition 5.2.1.11],[Lurog, Proposition 5.1.3.1] For any
oo-category &, the Yoneda embedding is fully faithful.

Theorem A.2.1.3.4. [Lurog, Theorem 5.1.5.6] Let € be a small co-category. For any small
oo-category D which admits small colimits, restriction along the Yoneda embedding of € induces
an equivalence of categories Fun©iM(BSH(E), D) = Fun(€, D), where Fun ™ indicates the
full sub-oco-category of co-functors preserving small colimits.

Corollary A.2.1.3.5 (Density theorem for co-categories). [Lurog, Corollary 5.1.5.8] The
Yoneda embedding is dense, that is its image Y (<) generates P&Sh(&) under small colimits.

Theorem A.2.1.3.6 (Yoneda lemma). [Lurog, Lemma 5.5.2.1] Let € be an oo-category, A
an object of € and F a presheaf (of spaces) on €. Let Y: € — PShH(&) denote the Yoneda

embedding for € and Y: PShH(€) — PSH(PShH(E)°P) the co-Yoneda embedding on PShH(E).
Then the oco-functor Y(F) o Y is equivalent to F.

A.2.2 Topologies and sheaves
A.2.2.1 Sieves and local equivalences

Categories of presheaves are often determined by their exactness properties. In order
to study them in further details, we need to impose certain finiteness conditions.

Definition A.2.2.1.1.  ® An oo-category € is (countably) accessible if it admits all
countably filtered colimits and is generated under small countably filtered colim-
its by an essentially small full sub-co-category consisting of compact objects.
Equivalently[Lurog, Proposition 5.4.2.2], € can be realised as the co-category of
ind-objects of a small co-category.

* An oo-category is presentable if it is accessible and admits all small colimits.

Theorem A.2.2.1.2. [Lurog, Theorem 5.5.1.1] An accessible co-category is presentable if and
only if it is the oco-category of presheaves of a small co-category.
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Definition A.2.2.1.3 (Stack co-topos). Saturation: Let ¢ be an co-category with small
colimits. A collection of morphisms S is strongly saturated if it is stable un-
der pushouts, has the 2-out-of-3 property, and the full subcategory Fun([1], ¢)
spanned by S is stable under small colimits. The smallest subclass S° of S which
is strongly saturated (by [Lurog, Reamrk 5.5.4.7]) is said to generate S.

Topological localisation: Let € be a presentable co-catgory, and S a strongly saturated
class of morphisms. We say that S is topological if it is generated by a subclass
S° consisting of monomorphisms and it is stable by base-change (pullbacks). We
then say that € — ¢[S7'] is a topological localisation of €.

oo-Topos: A stack co-topos is a topological localisation of an co-category of presheaves
on some co-category.

Lemma A.2.2.1.4. [Lurog, Proposition 5.5.4.20] Let € be a presentable co-category and S a
small set of morphisms is €. Then the localisation L: € — €[S™'] making morphisms in S
into equivalences is reflective, i.e. has a fully faithful right adjoint T exhibiting €[S™"] as a full
subcategory of €.

Proposition A.2.2.1.5. [Lurog, Proposition 5.5.4.2] Let € be a presentable co-category, let
S be a small set of morphisms in €. Then an object C of € is in the image of 7 o L (i.e. in the
sub-oo-category €[S™') if and only if it is S-local (as in|definition A.1.2.1.2.2). Furthermore,
every S-local equivalence is in S.

We will now see that any stack co-topos can be constructed as a category of sheaves on
an oo-site. We define a Grothendieck topology on an co-category € as a Grothendieck
topology on its homotopy category Ho €. An oco-site is a pair (€, T) of an co-category €
with a Grothendieck topology T. As in classical category theory, we have the following
correspondence.

Lemma A.2.2.1.6. [Lurog, Proposition 6.2.2.5] Let € be a small co-category, and denote the
Yoneda embedding by J: € — PSH(&). For every object C € &, there is a bijection between
the set of subobjects of Y (C) and the set of all sieves on C.

Definition A.2.2.1.7 (Sheaf). Let (&, T) be an co-site. A t-local equivalence is a mono-
morphism of presheaves on € whose associated sieve is T-covering. The category of
t-sheaves on € is the localisation of PSh(€) at the t-local equivalences. In other words,
t-sheaves are the t-local objects. We denote this reflective subcategory as Sh.(€).

Proposition A.2.2.1.8. [Lurog, Lemma 6.2.2.7] The class of t-local equivalences is topological,
so &b (€) is a stack oo-topos.

Theorem A.2.2.1.9. [Lurog, Proposition 6.2.2.9] Let € be a small co-category. There is a
bijective correspondence between equivalence classes of topological localisations of ‘P&Sh(¢)
and Grothendieck topologies on €, so that any stack co-topos is equivalent to the co-topos of
sheaves on an oco-site.

93



A.2.2.2 Descent and hypercovers

Construction A.2.2.2.1 (Coskeleton). Let A<, be the full subcategory of A whose
objects are [0], ..., [n].The inclusion functor v,,: A<,, — A induces for any co-category
¢ a restriction functor (: s€ — §,€ = Fun(A,F, €). Left and right Kan extension
provide left and right adjoints to this functor[Rie14, Example 1.1.9], and the composite
monads on s¢ are called respectively n-skeleton and n-coskeleton and denoted sk,
and cosk,,.

Definition A.2.2.2.2 (Hypercovering). Let (&, T) be an co-site. Let C € ¢, and write
Yyc = V(C) € PSH(C) for its representable presheaf. An augmented simplicial object
Ty of PEH(C) on yc, seen as a morphism of simplicial presheaves F, — yc .. (Where
Yc,e is the constant simplicial object associated to yc) is a T-hypercovering of C if for
every [n] € A the map F, — (coskn_1 Fo)n (Where F_; is the augmentation yc) is a
T-covering.

A hypercovering F, . of C is effective if its totalisation lim ', is yc.

Example A.2.2.2.3 (Cech nerve of a covering). Let p: U — V be a T covering in an
oo-site (&, T). The co-category €,y admits finite products of copies p (by the axioms
of a Grothendieck topology) as fiber products in ¢ of copies U over V, providing a
cotensor for the category of finite sets. Restricting along the inclusion of A in the
category of finite sets, we obtain a simplicial object N,(p), called the Cech nerve of
p, characterised by Ni(p) = U xy --- xy U, and which we view through the Yoneda
embedding as a simplicial presheaf. Since the simplicial object N, (p) is determined
by its first degrees, it is 0-coskeletal, which implies that it is a T-hypercovering since
Ni(p) =U — No(p) = V is T-covering.

By [Lurog, Lemma 6.5.3.9], all Cech nerves (in fact all coskeletal hypercoverings) are
effective hypercoverings.

Definition A.2.2.2.4 (Descent). Let (€, T) be an co-site. Let H denote the collection of
effective 1-hypercovers, and C C H the collection of Cech nerves of t-coverings. A
presheaf J on € is said to have t-hyperdescent if it is H-local (that is

lim Map (%,,, ) ~ Map <hi>n L, ff) — F(U) (A.6)

for any hypercover X, of any object U), and it is said to have t-descent if it is C-local.
Corollary A.2.2.2.5. A presheaf is a t-sheaf if and only if it has T-descent. O

Definition A.2.2.2.6 (Hypercompletion). Let T be a stack co-topos. A morphism
f: X = Y is co-connective if for any truncated object Z, the induced map Map(Y,Z) —
Map(X, Z) is an equivalence of spaces.

The co-topos ¥ is hypercomplete if its equivalences are exactly the co-connective
morphisms.
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By [Lurog, Proposition 6.5.2.8], the collection of co-connective morphisms of a stack
oo-topos ¥ is strongly saturated. We call an object of T hypercomplete if it is local for
the class of co-connective morphisms. It follows that the full sub-co-category spanned
by hypercomplete objects is the (reflective) localisation of ¥ at the co-connective morph-
isms, called its hypercompletion T, which is hypercomplete.

Proposition A.2.2.2.7. [Lurog, Corollary 6.5.3.13] Let (&, T) be an oco-site. The hypercom-
pletion &b (€)" is the co-category of presheaves with t-hyperdescent.

Theorem A.2.2.2.8. [I'Vos, Theorem 3.8.3] Let € be a small co-category. There is a bijective
correspondence between Grothendieck topologies on € and hypercomplete left exact localisations

of BSH(E).
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