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ABSTRACT. The quantum Lefschetz formula explains how virtual fundamental
classes (or structure sheaves) of moduli stacks of stable maps behave when passing
from an ambient target scheme to the zero locus of a section. It is only valid un-
der special assumptions (genus 0, regularity of the section and convexity of the
bundle). In this paper, we give a general statement at the geometric level remov-
ing these assumptions, using derived geometry. Through a study of the structure
sheaves of derived zero loci we deduce a categorification of the formula in the∞-categories of quasi-coherent sheaves. We also prove that Manolache’s virtual
pullbacks can be constructed as derived pullbacks, and use them to recover the
classical Quantum Lefschetz formula when its hypotheses are satisfied.
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1. INTRODUCTION

1.1. The quantum Lefschetz hyperplane principle. Any quasi-smooth derived
scheme is Zariski-locally presented as the (derived) zero locus of a section of a
vector bundle on some smooth scheme. The Lefschetz hyperplane theorem then
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gives a way of understanding the cohomology of such a zero locus from the data
of that of the ambient scheme and of the vector bundle. The quantum Lefschetz
principle, similarly, gives the quantum cohomology, that is the Gromov–Witten
theory, of the zero locus from that of the ambient scheme and the Euler class of the
vector bundle.

Let X be a smooth projective variety and let E be a vector bundle on X, and con-
sider the abelian cone stack R0p∗ ev∗ E on Mg,n(X,β), where ev : Cg,n(X,β)→ X

is the canonical evaluation map (corresponding by the isomorphism Cg,n(X,β) '
Mg,n+1(X,β) to evaluation at the (n+ 1)th marking) and p : Cg,n →Mg,n is the
projection. Let s be a regular section of E and i : Z ↪→ X be its zero locus. An in-
spection of the moduli problems (see the proof of corollary 3.2.4) reveals that the
disjoint union, over all classes γ ∈ A1Z mapped by i∗ to β, of the moduli stacks of
stable maps to Z of degree γ coincides with the zero locus of the induced section
R0p∗ ev∗ s of R0p∗ ev∗ E. The natural question, leading to the quantum Lefschetz
theorem, is whether this identification remains true at the “virtual” level, which
was conjectured by Cox, Katz and Lee in [CKL01, Conjecture 1.1]. It was indeed
proved in [KKP03] for Chow homology, and the statement was lifted in [Jos10] to
G0-theory, that under assumptions on E the Gromov–Witten theory of Z is equi-
valent to that of X twisted by the Euler class of E, in that the following holds.

Theorem A ([KKP03; Jos10]). For any γ ∈ A1Z such that i∗γ = β, let uγ : M0,n(Z, γ) ↪→
M0,n(X,β) denote the closed immersion. Suppose E is convex, that is R1p∗(C,µ

∗E) = 0

for any stable map µ : C → X from a rational (i.e. genus-0) stable curve C p−→ S (so that
the cone R0p∗ ev∗ E is a vector bundle). Then
(1)∑
i∗γ=β

uγ,∗
[
M0,n(Z, γ)

]vir
=
[
M0,n(X,β)

]vir
^ ctop(R0p∗ ev∗ E) ∈ A•

(
M0,n(X,β)

)
,

and
(2)∑
i∗γ=β

uγ,∗

[
Ovir

M0,n(Z,γ)

]
=
[
Ovir

M0,n(X,β)

]
⊗ λ−1(R0p∗ ev∗ E) ∈ G0

(
M0,n(X,β)

)
.

It was shown in [Coa+12] that the quantum Lefschetz principle as stated in (1)
can be false when the vector bundle E is not convex (or as soon as g is greater than
0). The reason for this is that R0p∗ ev∗ E no longer equals Rp∗ ev∗ E and the twist-
ing Euler class should be corrected by taking into account the term R1p∗ ev∗ E: in
other words, one should use the full derived pushforward and view the induced
cone as a derived vector bundle Rp∗ ev∗ E. This will require viewing our moduli
stacks through the lens of derived geometry.

In this note, we use this philosophy to undertake the task of simultaneousley
relaxing the hypotheses on theorem A and lifting it to a categorified (and a geo-
metric) statement, by which we mean that:

• we will give a formula at the level of a derived∞-category of quasicoher-
ent sheaves,

• we will not need to fix the genus to 0,
• we will not need to assume that E is convex, or in fact a classical vector

bundle (i.e. it can come from any object of the∞-category Perf(OX)),
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• we will not need to assume that the section is regular, as we can allow the
target to be any derived scheme (or even a 1-algebraic derived stack) rather
than a smooth scheme.

We note however that only the categorified form of the formula will hold in
full generality, as the usual convexity (and genus) hypotheses are still needed to
ensure bounded-coherence conditions so as to decategorify to G-theory.

1.2. Derived moduli stacks and virtual classes. In [MR18], the categorification
of Gromov–Witten classes, as a lift from operators between G0-theory groups to
dg-functors between dg-categories of quasicoherent (or coherent, or perfect) O-
modules, was achieved through the use of derived algebraic geometry. Indeed,
this language allows one to interpret the homological corrections appearing in
classical algebraic geometry as actual geometric objects; in particular the virtual
structure sheaf

[
Ovir

M0,n(X,β)

]
was realised as the actual structure sheaf of a derived

thickening RMg,n(X,β) of the moduli stack, so that applying the (∞, 2)-functor
QCoh to the appropriate correspondences produces the desired lift of Gromov–
Witten theory.

The idea of viewing the virtual fundamental class as a shadow of a higher struc-
ture sheaf was introduced in [Kon95], and made more precise first in [CK09] using
the language of dg-schemes and in [Toë14, §3.1] via derived geometry. The derived
moduli stack of stable maps RMg,n(X,β) was constructed in [CK02] and [STV15].
Finally, [MR18] showed that the virtual structure sheaf really is given by the struc-
ture sheaf of the derived thickening, or rather its image by the isomorphism ex-
pressing that G-theory does not detect thickenings. Hence, in order to under-
stand theorem A from a completely geometric point of view, the role of the virtual
classes should indeed be played by derived moduli stacks.

We may now state the main result of this note, which addresses the question
of similarly understanding the virtual statement of the quantum Lefschetz prin-
ciple as a derived geometric phenomenon, and of deducing an expression for the
“virtual structure sheaf” of

∐
γ Mg,n(Z, γ), understanding along the way the ap-

pearance of the Euler class of the bundle. In the remainder of this introduction, we
shall write Ru :

∐
γ RMg,n(Z, γ) ↪→ RMg,n(X,β) the canonical closed immersion

(beware that Ru is not a right derived functor, but simply a morphism of derived
stacks which is a thickening of u).

Theorem B (Categorified quantum Lefschetz principle, see corollary 3.2.4 and pro-
position 2.2.2). Let X be a derived scheme, E ∈ Perf≥0(OX) a co-connective perfect
module, and s a section of VX(E) with zero locus Z = X ×R

VX(E) X. Write s : E∨ :=

(Rp∗ ev∗ E)∨ → OMg,n(X,β) the cosection (of modules) corresponding to Rp∗ ev∗ s.
There is an equivalence
(3)
(Ru)∗O∐

γ RMg,n(Z,γ) ' ORMg,n(X,β)⊗Sym (cofib(s)) /(t−1) = Sym (cofib(s)) /(t−1)

in QCoh
(
RMg,n(X,β)

)
, where cofib(s) denotes the cofibre (or homotopy cokernel) of

the linear morphism s and where Sym (cofib(s)) canonically admits an ORMg,n(X,β){t}-
algebra structure.
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We first notice that, in this categorified statement and unlike in the G-theoretic
one, the Euler class of E∨ is refined to one taking into account the section s. Non-
etheless this is indeed a categorification of theorem A, as we will explain in corol-
lary 2.2.6 and subsection 4.3. When s is the zero section, meaning that s is the zero
morphism, then Sym(cofib(s)) = Sym(E∨[1]) ⊗ OA1 , with Sym(E∨[1]) =

∧•
(E∨)

so that in that case we do recover a categorified Euler class. In particular, passing
to the G0 groups will indeed provide an identification of the cofibres of any and
all sections, and hence give back eq. (2); this is corollary 4.3.3.

The theorem will in fact come as a corollary of a geometric statement, as a
translation of the fact that Euler classes (also known, in the categorified setting,
as Koszul complexes) represent zero loci of sections. Indeed, we will show that
the moduli stack

∐
γ RMg,n(Z, γ) = SpecRMg,n(X,β)

(
(Ru)∗O∐

γ RMg,n(Z,γ)

)
sat-

isfies the universal property of the zero locus of Rp∗ ev∗ s, meaning that (per co-
rollary 3.2.4, the geometric quantum Lefschetz principle) it features in the cartesian
square

(4)

∐
i∗γ=β

RMg,n(Z, γ) RMg,n(X,β)

RMg,n(X,β) E|RMg,n(X,β)

Ru2

Ru1

y Rp∗ ev∗ s

0E

.

The formula eq. (3) for its relative function ring will then be a consequence of the
general result proposition 2.2.2 describing zero loci of sections of vector bundles.

Remark C. While we have written this introduction with the assumption that the
target X is a scheme for simplicity, the geometric and categorified quantum Lef-
schetz principles are not only valid for (derived) schematic targets, but also for
orbifold Gromov–Witten theory, as foreshadowed by [Coa+12, Proposition 5.1]. In
fact X and Z can be allowed to be derived algebraic stacks, and RMg,n(X,β) ⊂
RMap/Mtw

g,n
(Ctw

g,n, X × Mtw
g,n) (where Ctw

g,n → Mtw
g,n denotes the universal twisted

curve) can be any open substack corresponding to a quasimap stability condition,
as used for example in [CJW19] and detailed in [Ker21, §4.2.1.1].

The original proof of the quantum Lefschetz principle in [KKP03] also consisted
of applying an excess intersection formula to a geometric (or homological) state-
ment, here the fact that the embedding u satisfies the compatibility condition im-
plying that Gysin pullback along it preserves the virtual class. The situation was
shed light upon in [Man12], where it was shown that, using relative perfect ob-
struction theories (POTs), one can construct virtual pullbacks, which always pre-
serve virtual classes. The embedding u being regular, its own cotangent complex
can be used as a POT to construct a virtual pullback, which evidently coincides
with the Gysin pullback.

Here we will show (in section 4) that, much in the same way as for the virtual
classes, the virtual pullbacks may be understood as coming from derived geo-
metric pullbacks of coherent sheaves, so that our statement for the embedding of
derived moduli stacks does imply the quantum Lefschetz formula for the virtual
classes (and in fact its standard proof), with the classical convexity hypotheses
now appearing as necessary to make decategorification possible.
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1.4. Notations and conventions. We will use freely the language of (∞, 1)-categories
(referred to as∞-categories), developed in a model-independent manner in [RV22],
and of derived algebraic geometry, as developed for example in [TV08] and [Lur19].
The∞-category of∞-groupoids, also known as that of spaces in [Lur09], will be
denoted∞-Grpd, and similarly the∞-category of∞-categories is∞-Cat.

We work over a fixed field k of characteristic 0; hence the ∞-category of k-
module spectra can be modelled as the localisation of the category of k-dg-modules
along quasi-isomorphisms, in a way compatible with the monoidal structures so
that connective k-E∞-algebras are modelled by k-cdgas concentrated in non-positive
cohomological degrees. The∞-category of derived stacks on the big étale∞-site
of k will simply be denoted dStk.

Remark D. The geometric and categorified part of our result, that is section 2 (ex-
cept remark 2.2.4 and beyond) and section 3 are valid when k is any E∞-algebra
over the sphere spectrum S. However the formation of free spectral algebras does
not have good finiteness properties, so in order to have bounded structure sheaves
defining G-theory classes we do need to work over Q where the free spectral algeb-
ras coincide (by [Lur19, Proposition 25.2.6.1]) with the polynomial construction.

We implicitly embed stacks into derived stacks; as such all construction are
derived by default. In particular the symbol × will refer to the (homotopical) fibre
product of derived stacks; the truncated (i.e. strict, or underived) fibre product of
classical stacks will be denoted ×t, that is X ×t

Y Z = t0(X ×Y Z) for X, Y and Z
classical.

We shall always use cohomological indexing. By a dg-category (over k) we will
mean a k-linear stable ∞-category. For any derived stack X, one defines its G0-
theory group G0(X) as the zeroth homotopy group of the K-theory spectrum of
the dg-category Cohb(X).

2. ZERO LOCI OF SECTIONS OF DERIVED VECTOR BUNDLES

2.0. A spicilege of derived geometry for Gromov–Witten theory. The main im-
port of derived geometry in Gromov–Witten theory is to make the homological
objects which appear to correct defaults of smoothness more natural (and geomet-
ric) by incorporating them from the start as the basic blocks of the theory. Since
the complexes intervening can only be considered up to quasi-isomorphism, this
amounts in essence to replacing the category of k-modules with the derived cat-
egory of such as the place in which to define k-algebras. Furthermore, in odrer to
work properly with morphisms between derived k-algebras, it is necessary to take
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the derived category not just as a homotopy category, but as a full∞-categorical
localisation.

In this note, working over a base field k containing Q, we will take the view
that the the chain complexes of (classical) k-modules, seen as objects of the de-
rived ∞-category, are nothing more than models presenting a more intrinsic no-
tion of “derived” (sometimes also called “animated”) k-modules1. In other words,
rather than constructing ∞-categorical objects from classical ones, we will take
the∞-categorical language as the more primitive one. As such, for any (possibly
derived) k-algebra A, we will simply call A-modules the objects of the derived
(∞, 1)-category of A-modules, which in Gromov–Witten theory are usually rather
seen as complexes of truncated A-modules. Our only exception to this terminology,
for historical reasons as for example in [Lur17], will be for the following important
example:

Example 2.0.1 (Cotangent complex). If A is a truncated k-algebra and A → B is
an A-algebra which is truncated as well, its cotangent complex LB/A can be seen
as enhancing the cotangent module Ω1

B/A with homological corrections2 carrying
deformation-theoretic information; this is the role it plays in the construction of
virtual classes. Returning now to the case where A is any general (i.e. derived)
k-algebra, the cotangent complex of an A-algebra A → B, denoted LB/A, can be
characterised as representing (∞-categorical) A-derivations from B, so now plays
in higher algebra the exact same role that the cotangent module plays in classical
algebra.

The ideas sketched above provide the notion of affine derived k-schemes, as
the objects of the opposite ∞-category to that of derived k-algebras. Since our
interest is in enumerative geometry, we shall use the definition of derived k-stacks
as moduli problems, i.e. given by their∞-functors of points, ∞-functors Aff

op
k =

Algk →∞-Grpd satisfying descent conditions for the étale topology on Affk.

Example 2.0.2 (Quasicoherent modules). The assignment to SpecA ∈ Aff
op
k of (the

maximal∞-groupoid of) the∞-category QCoh(SpecA) of A-modules defines by [TV08,
Theorem 1.3.7.2] a derived stack (of ∞-categories) denoted QCoh, whose group-
oidal core is viewed as the classifying stack for quasicoherent modules. Then, for
any derived stack X, the∞-category of quasicoherent sheaves on X is

(5) QCoh(X) = hom(X,QCoh) ' lim←−
Spec A→X

QCoh(SpecA).

That is, a quasicoherent OX-module M is given by an A-module Mx for every
x : SpecA→ X, and base-change isomorphisms f∗Mx′

'−→Mx for every morphism
f : SpecA→ SpecA′ of X-schemes (along with higher compatibilities).

Every derived stack X has its truncation t0 X, a classical (higher) stack obtained
by restricting the functor of points X along the inclusion of truncated (or classical)
algebras in all (derived) algebras. The truncation ∞-functor t0 : dStk → Stk is
right-adjoint to an∞-functor i : Stk → dStk which is fully faithful (providing an

1Defined more formally as modules over the Eilenberg–MacLane spectrum of k in the ∞-category
of spectra.

2In practice, it can be constructed, as a left-derived functor of Ω1
−/A

, by taking a semi-free resolution

of B and applying Ω1
−/A

degreewise.
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embedding of classical higher stacks into derived stacks, by viewing them as trivi-
ally derived) and will be omitted from notation. This is in keeping with our prin-
ciple of implicitly embedding stacks into derived stacks; as such all construction
are derived by default. In particular the symbol × will refer to the fibre product of
derived stacks (given on affines by the “derived” tensor product of algebras); the
truncated (i.e. strict, or underived) fibre product of classical stacks will be denoted
×t, that is X×t

Y Z = t0(X×Y Z) for X, Y and Z classical.
The counit of the adjunction i a t0 will be denoted ; its components X : t0 X ↪→

X are closed immersions and will play an important role in the construction of vir-
tual pullbacks in subsection 4.1.

In subsection 3.1, we will recall in more details the relevance of derived gro-
metry, and in particular the role played by the cotangent complex, in Gromov–
Witten theory.

2.1. Vector bundles in derived geometry.

Definition 2.1.1 (Total space of a quasicoherent module). Let X be a derived Artin
k-stack. For any quasicoherent OX-module M, the linear derived stack VX(M) is
described by the∞-functor of points mapping an X-derived stack φ : T → X to the∞-groupoid

(6) homQCoh(T)(OT , φ
∗M).

We call abelian cone over X any X-stack equivalent to the total space VX(M) of
a quasicoherent OX-module M. We shall say that VX(M) is a perfect cone if M is
perfect (equivalently, dualisable), and a vector bundle if M is locally free of finite
rank (as defined in [Lur19, Notation 2.9.3.1]).

Remark 2.1.2. If M is a locally free OX-module, by [Lur19, Proposition 2.9.2.3] we
may take a Zariski open cover

∐
i Ui → X with M|Ui

free of rank ri. We deduce
from this (or from [Lur17, Remark 7.2.4.22] and [Lur19, Remark 2.9.1.2]) that any
locally free module has Tor-amplitude concentrated in degree 0, and it will follow
from proposition 2.1.10 that any vector bundle is smooth over its base.

Remark 2.1.3. If M is dualisable, with dual M∨, then as pullbacks commute with
taking duals we have for any φ : T → X

VX(M)(φ) = homQCoh(T)(φ
∗M∨,OT )

= homAlg(OX)(Sym
OX

(M∨), φ∗OT ) = Specnc
X (Sym

OX
(M∨))(φ)

(7)

where Specnc
X denotes the non-connective relative spectrum∞-functor. Hence the

restriction of VX to Perf(OX) is naturally equivalent to the composite Specnc
X ◦

Sym
OX

◦(−)∨. In particular, if M is a connective module then VX(M) is a relatively
coaffine stack, while if M is co-connective, so that Sym

OX
(M∨) is a connective al-

gebra, VX(M) is an affine derived X-scheme.
Note however that the ∞-functor Specnc

X only becomes fully faithful when re-
stricted to connective OX-algebras (as this restriction is equivalent to the Yoneda
embedding thereof) but not when acting on general OX-algebras in degrees of ar-
bitrary positivity (see for example [Mon21] for a counterexample, as well as details
on the full-faithfulness of the∞-functor VX(−

∨)).

Warning 2.1.4 (Terminology). Note that our convention for derived perfect cones
is dual to that used in (among others) [Toë14] (and dating back to EGA2), which
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defines the total space of a quasicoherent OX-module M as the X-stack whose sheaf
of sections is M∨, i.e. what we denote VX(M

∨).

Example 2.1.5. i. If X is a classical Deligne–Mumford stack and M is of per-
fect amplitude in [−1, 0], the truncation t0(VX(M[1]∨)) is the abelian cone
Picard stack H1/H0(M∨) of [BF97, Proposition 2.4].

ii. By [TV08, Proposition 1.4.1.6], VX(TX) = TX ' RMap(k[ε], X) is the tan-
gent bundle stack of X. More generally, using k[εn] where εn is of co-
homological degree −n (so of homotopical degree n) we have the shifted
tangent bundle T [−n]X ' VX(TX[−n]). Dually, one also defines the shifted
cotangent stack T∨[n]X = VX(LX[n]).

Lemma 2.1.6 ([TV07, Sub-lemma 3.9],[AG14, Theorem 5.2]3). Suppose M is of perfect
Tor-amplitude contained in [a, b] (where a, b ∈ Z). Then the derived stack VX(M) is
(−a)-geometric and strongly of finite presentation.

Construction 2.1.7. For any derived stack X, the∞-functor VX gives a link between
two functorial (in X) constructions. On the one hand we have the ∞-functor
(−)ét : dStk → ∞-Cat mapping a derived k-stack X to its étale ∞-topos Xét and
a map of derived stacks f : X → Y to the direct image f∗ of the induced geometric
morphism, mapping a sheaf F on dStk,/X to the sheaf f∗F : (U→ Y) 7→ F(U×YX→
X).

On the other hand, we have the∞-functor QCoh(−) mapping a derived k-stack
X to the underlying∞-category of the dg-category QCoh(X), and a map f : X→ Y
to M 7→ f∗M (where the direct image sheaf is considered an OY-module through
f] : OY → f∗OX). Then for any M ∈ QCoh(X), we obtain the functor of points of its
total space, VX(M), which is an étale sheaf on dStk,/X.

Lemma 2.1.8. Let dSt
(f.coh.d.)
k denote the wide and 2-full sub-∞-category whose 1-

arrows are the morphisms of finite cohomological dimension (see [HP14, Definition A.1.4,
Lemma A.1.6]). The∞-functors VX : QCoh(X)→ Xét assemble into a natural transform-
ation V : QCoh(−)⇒ (−)ét of∞-functors dSt

(f.coh.d.)
k →∞-Cat.

Proof. We must construct, for any f : X→ Y and any M ∈ QCoh(X), an equivalence
f∗(VX(M)) = VY(f∗M). For any φ : U→ Y, the base change along f will take place
in the cartesian square

(8)

X×
Y
U X

U Y

f×
Y
U

X×
Y
φ

y f

φ

.

Then we have VY(f∗M)(U) = homQCoh(U)(OU, φ
∗f∗M) while

f∗(VX(M))(U) = homQCoh(X×YU)(OX×YU, (X×Y φ)∗M)

' homQCoh(X×YU)((f×Y U)∗OU, (X×Y φ)∗M)

' homQCoh(U)(OU, (f×Y U)∗(X×Y φ)∗M).
(9)

By the base-change property of [HP14, Proposition A.1.5 (3)] the two coincide.

3The grading convention used in [AG14] is homotopical, in opposition to our cohomological con-
vention.
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Since the isomorphisms appearing in eq. (9) and the base-change map are defined
from adjunctions, they come equipped with functoriality property which furnish
the higher naturality coherences. �

Remark 2.1.9. By [Toë12, Theorem 2.1] , if f : X → Y is quasi-smooth and proper
then f∗ sends perfect OX-modules to perfect OY-modules.

Finally, we shall use the following well-known description of the cotangent
complex of a perfect cone.

Proposition 2.1.10 ([AG14, Theorem 5.2]). Let M be a perfect OX-module, and write
π : VX(M)→ X the structure morphism. Then Lπ : VX(M)/X ' π∗M∨.

Proof. The equivalence is established fibrewise in [Lur17, Proposition 7.4.3.14]. �

2.2. Excess intersection formula. In this subsection, we work with a derived stack
M and the closed embedding u : T ↪→M of derived stacks defined as the zero locus
of a section s = SpecMs] of a (relatively affine) perfect cone SpecMSym

OM
(F∨) on

M: we fix a co-connective (for the relative affineness) perfect OM-module F and
a morphism of OM-algebras s] : Sym

OM
(F∨) → OM, corresponding (by the left-

adjoint property of Sym
OM

) to the cosection s̃ : F∨ → OM of the module F∨.

Remark 2.2.1 (Notation, derived versus spectral symmetric powers). In spectral
algebraic geometry, over an E∞-ring spectrum O, the construction of polynomial
algebras, usually denoted O[t1, . . . , tm], differs from that of free symmetric algeb-
ras, denoted O{t1, . . . , tm} = Sym

O
(O⊕m). Working as we do in characteristic zero,

the difference between the two vanishes; however, as we wish to emphasise that
the left-adjoint property of the symmetric algebra ∞-functor is the one that mat-
ters for us, making the main result of this subsection valid over not just over our
base k but over a general ring spectrum, we shall use the spectral notation. In
particular, the affine line over M is A1

M = SpecM(OM{t}) = SpecMSym
OM

O⊕1
M .

Proposition 2.2.2. The derived M-stack T may be recovered as the fibre

(10) T ' VM(cofib(s̃)∨) ×
A1

M

{1}M

for a certain structure of stack over A1
M = SpecM(OM{t}) on VM(cofib(s̃)∨), that is T

is the relative spectrum of the quotient OM-algebra

(11) u∗OT = Sym
OM

(
cofib(s̃)

)
/(t− 1),

where the structure map εOM
: OM{t}→ OM is the quotient arrow OM{t}→ OM{t}/(t−

1) ' OM mapping t to 1 (i.e. corresponding to the identity morphism of OM-modules
1OM

: OM → OM).
More generally, the monad u∗u

∗ on QCoh(M) identifies with tensoring by the algebra
Sym

OM
(cofib(s̃))/(t− 1).

Proof. From the canonical fibre sequence F∨ s̃−→ OM → cofib(s̃) we obtain, by
application of the (∞, 1)-functor Sym

OM
, an OM{t}-algebra structure OM{t} :=

Sym
OM

(OM) → Sym
OM

(cofib(s̃)). As Sym
OM

is a left-adjoint it preserves colimits
(by [RV22, Theorem 2.4.2]) whence the latter term, image by Sym

OM
of the OM-

module 0⊕F∨O⊕1
M =: cofib(s̃), is the pushout of algebras (so by [Lur17, Proposition

3.2.4.7] the tensor product) OM ⊗Sym
OM

(F∨) OM{t}.
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By definition, the algebra Sym
OM

(cofib(s̃))⊗OM{t} OM under consideration fits
in the left pushout square in the diagram

(12)

Sym
OM

(cofib(s̃))/(t− 1) Sym
OM

(cofib(s̃)) OM

OM OM{t} Sym
OM

(F∨).

y y

εOM Sym(s̃)

From the previous discussion the right square is also cocartesian, so that the bigger
diagram is also a pushout square. We now observe that the lower composite iden-
tifies with s] (since the map εOM

is the counit of the adjunction Sym
OM

a frgt), so
that the big pushout square computes the function OM-algebra of the zero locus
of s.

Finally, both u∗ and u∗ are left-adjoints, so by the homotopical Eilenberg–Watts
theorem of [Hov15] (see also [GR17a, Chapter 4, Corollary 3.3.5]) their composite
u∗u

∗ is equivalent to tensoring by u∗u
∗OM. This can also be seen as a projection

formula (proved for example in [Lur19, Remark 3.4.2.6]) between u∗(u
∗ − ⊗OT )

and − ⊗ u∗OT , or indeed, more tautologically, as the definition of the direct and
inverse image functors from the point of view of derived stacks as ringed∞-topoi
(from which the further identification of the monad structures follows readily). �

Remark 2.2.2.1 (Geometric interpretation). Let s : A1
M → VM(F) be the linearisation

of s, obtained as the image of s̃ by VM. The zero locus of s is A1
M|T ∪ A0

M\T , so
taking the fibre at any non-zero element λ of A1

M recovers T × {λ} ∪ ∅ ' T .

Example 2.2.2.2 (Koszul complexes). Suppose F is locally free. Then, passing to
a Zariski open cover

∐
Ui → M, we may assume as in remark 2.1.2 that F|Ui

is
free of rank ri. Write s̃|Ui

= (s`)1≤`≤r in coordinates. Then we recover the Koszul
complex

⊗r
`=1 cofib(s`), as studied for instance in [KR19, §2.3.1] or [Vez11].

Recall that the exterior algebra of the quasicoherent OM-module F∨ is
∧•

F∨ :=
Sym

OM
(F∨[1]) =

⊕
n≥0(

∧n
F∨)[n].

Corollary 2.2.3 (Excess intersection formula). For any quasicoherent OT -module M

that is the restriction (along u∗) of an OM-module, there is an equivalence

u∗u∗M = M⊗OT

∧•
F∨|T .(13)

Proof. The∞-functor u∗ is a left-adjoint so it preserves colimits, among which in
particular cofibres. By definition, we are given an equivalence u∗s̃ ' u∗0 = 0,
so the image by u∗ of eq. (11) takes the form Sym(cofib 0)/(t − 1). By definition
of the zero morphism, we may decompose this pushout as the composite of two
amalgamated sums:

(14)
F∨[1]⊕ OM F∨[1] 0

OM 0 F∨

y y

!

!

!

!

!

0

,
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so that Sym
OM

(cofib 0) = Sym
OM

(F∨[1] ⊕ OM) = Sym(F[−1]∨) ⊗OM
OM{t}. As

u∗ has a structure of monoidal∞-functor, this extends to any OT -module M in the
image of u∗.

Of course, this can also be obtained more directly from the fact that, when s is
restricted to zero, the leftmost diagram below is the image by SpecMSym

OM
of the

rightmost one:

(15)
T M

M VM(F)

u

u

y
0VM(F)

0VM(F)

u∗OT 0

0 F∨

y

!

! .

�

Remark 2.2.4 (Lie-theoretic interpretation). The excess intersection formula can
also be seen as coming from the study of the L∞-algebroid associated with the
closed embedding u. Indeed, we are studying the geometry of a closed sub-
derived stack T ⊂ M, which can be understood through that of its formal neigh-
bourhood M̂T = M×MdRTdR. This is a formally algebraic derived stack (see [CG18,
section 4.1] or [GR17b, Chapter 1, Definition 7.1.2] for details) which is a formal
thickening of T . By [GR17b, Chapter 5, Theorem 2.3.2], the∞-category of formal
thickenings of T is equivalent to that of groupoid objects in formally algebraic de-
rived stacks over T (via the∞-functor sending a thickening T → F to its simplicial
kernel, or Čech nerve), and following the philosophy of formal moduli problems
it can be considered as a model for the∞-category of L∞-algebroids.

We have the sequence of adjunctions u∗ a u∗ a u!, implying that the comonad
u∗u∗ is left-adjoint to the monad u!u∗ (on Ind(Cohb(T)), only u∗u∗ restricting to
a comonad on Cohb(T) when u is quasi-smooth by [GR17a, Chapter 4., Lemma

3.1.3]). Let us write T
û−→ M̂T

p−→M the factorisation of u, so that u!u∗ = û!p!p∗û∗.
Note that p : M ×MdR TdR → M is the canonical projection, and as both TdR and
MdR are étale over Spec k it is also an étale morphism, and we recover û!û∗. Fol-
lowing [GR17b, Chapter 8, 4.1.2], the monad u!u∗ becomes the universal envelop-
ing algebra of the L∞-algebroid associated with u, endowed with the Poincaré–
Birkhoff–Witt filtration. As the ∞-functor of assciated graded is conservative
when restricted to (co)connective filtrations, we only need an expression for the
associated graded of the PBW filtration. The result is then nothing but the PBW
isomorphism of [GR17b, Chapter 9, Theorem 6.1.2] stating that for any regular
embedding of derived stacks u : T ↪→M, the monad û!û∗ on Ind(Cohb(T)) is equi-
valent to tensoring by Sym

OT
(Tû), and Tû = Tu since p is étale. Passing back to

the adjoint, we do obtain that u∗u∗ is equivalent to tensoring with Sym
OT

(T∨
u ).

A similar equivalence between the Hopf comonad u∗u∗ and tensoring by the
jet algebra (the dual of the universal enveloping algebra) of Tu was established
in [CCT14, Theorem 1.3] using the model of dg-Lie algebroids for L∞-algebroids
(see [CG18, Proposition 4.3, Theorem 4.11] for a precise statement of the equival-
ence between dg-Lie algebroids and formally algebraic derived stacks as models
for L∞-algebroids). However this approach does not provide the PBW theorem
needed to identify the jet algebra of Tu with Sym(Lu).
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Finally, it is easy to see from proposition 2.1.10 that the base-change property
of cotangent complexes and the fibre sequence associated with the composition
$ ◦ s = 1 imply Lu = u∗Ls = u∗s∗L$[1] = u∗F∨[1].

Then, conservativity of the restriction of u! to the∞-category Ind(Cohb(M)T ) '
Ind(Cohb(M̂T )) of coherent sheaves with support (by [GR17a, Chapter 4, Proposi-
tion 6.1.3 (c)]) gives another reason for the equivalence u∗OZ ' (cofib(s̃))/(t− 1).

Although it is not possible to directly relate s and the zero section at the geo-
metric level and to obtain an expression of u∗OT in terms of the Euler class of F∨,
passing to G-theory a homotopy between the maps they induce always does exist,
and hence we recover the classical formulation of the quantum Lefschetz hyper-
plane formula.

Warning 2.2.5. When T is quasi-smooth, OT belongs to Cohb(T) so by [GR17a,
Chapter 4, Lemma 5.1.4] u∗OT is in Cohb(M) and thus defines a class in G0(M).

However this is no longer the case if T is not quasi-smooth (or, more generally,
when the embedding u : T ↪→ M is not quasi-smooth even if T itself is); for ex-
ample when s = 0,

∧•
F∨ will fail to be bounded if F does not have Tor-amplitude

concentrated in degree 0.

We recall the notation of the G-theoretic Euler class of a locally free OM-module
G of finite rank: λ−1(G) :=

[∧•
G
]
=
∑

i≥0

[∧i
G[i]
]
=
∑

i(−1)i
[∧i

G
]
∈ G0(M).

Corollary 2.2.6 ([Kha21, Lemma 2.1]). Suppose F is a vector bundle. There is an equi-
valence of G-theory operators

(16) u∗u
∗ ' (−)⊗ λ−1(F

∨) : G(M)→ G(M).

Proof. We first note that, by definition, F being locally free of finite rank means that
it is (flat-locally) almost perfect, which makes it bounded, and flat, which makes it
of Tor-amplitude concentrated in [0] and implies that F∨[1] has Tor-amplitude in
[−1, 0] so that its symmetric algebra is still bounded and thus in Cohb(M), defining
an element of G0(M).

By [Kha21, Lemma 1.3], the fibre sequence OM → cofib(s̃) → F∨[1] implies
that [Symn

OM
(cofib s̃)] = ⊕n

i=0[Symn−i(OM) ⊗ Symi(F∨[1])] for all n ≥ 0. By the
A1-invariance of G-theory we may remove the symmetric algebra of OM, which
gives the result. �

3. THE GEOMETRIC LEFSCHETZ PRINCIPLE

3.1. Review of the derived moduli stack of stable maps. Let X be a target derived
1-Artin stack. We denote πg,n : Cg,n → Mg,n — omitting mention of the twisted
structure — the universal curve over the moduli stack of prestable stacky curves of
genus g with n markings (and arbitrary orders of isotropy groups at the markings).

Remark 3.1.1. Note that we can allow X to be derived — although it is still required
to be only 1-algebraic, as otherwise twisted curves will not be enough to ensure
properness of the stack of stable maps to it — without any change to the usual the-
ories of stable maps to X, as the moduli problem for prestable curves parametrises
flat families, whose fibres over a derived stack must still be classical. More pre-
cisely, [Lur04, Theorem 8.1.3] shows (see also [PY20, Proposition 4.5] for a precise
proof of the non-archimedean analogue) that the obvious extension of the moduli
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problem for prestable curves to a derived moduli problem is representable by a
classical DM stack Mg,n.

The ∞-category of derived stacks (or any of its slices), as an ∞-topos, is also
cartesian closed, with internal hom denoted RMap(−,−); the property of being
right-adjoint to the cartesian product imposes that, as a functor of points, for any
base B and B-stacks M and N, the B-stack RMap/B(M,N) be given by

(17) RMap/B(M,N) : (T → B) 7→ homdSt/B
(M×B T,N).

Proposition 3.1.2 ([MR18, (4.3.4)], [HP14, Proposition 5.1.10], [Lur19, Proposition
19.1.4.1 (2)]). Let M be a base derived stack and C→M and D→M be two M-derived
stacks. Then

(18) TRMap
/M

(C,D)/M = $∗ ev∗ TD/M

where $ : C×MRMap/M(C,D)→ RMap/M(C,D) is the projection and ev : RMap/M(C,D)→
D is the evaluation map.

Remark 3.1.3. In the case of the open moduli substack of stable maps (recall that a
Zariski-open immersion, like any étale map, has vanishing relative cotangent com-
plex), we recognise in eq. (18) the formula defining the perfect obstruction theory
used to define the virtual fundamental class in Gromov–Witten theory, cf [MR18,
Proposition 4.3.1].

Corollary 3.1.4. If X is smooth (resp. smooth with convex tangent bundle), then the
derived stack RMap/Mg,n

(Cg,n, X×Mg,n) is a quasi-smooth (resp. smooth). �

Remark 3.1.5. For any classical scheme T →Mg,n, we can compute that

(
t0 RMap/Mg,n

(Cg,n, X×Mg,n)
)
(T →Mg,n)

= homdSt

(
Cg,n ×

Mg,n

T, X
)

' homdSt

(
Cg,n

t
×

Mg,n

T, X
)

' homSt

(
Cg,n

t
×

Mg,n

T, t0 X
)

=
(
Map/Mg,n

(Cg,n, t0 X×Mg,n)
)
(T →Mg,n)

(19)

where the first isomorphism is because Cg,n → Mg,n is flat and the second from
the right-adjoint property of t0. This shows that RMap/Mg,n

(Cg,n, X×Mg,n) is a
derived thickening of the classical mapping stack Map/Mg,n

(Cg,n, X×Mg,n) (see
also [TV08, Theorem 2.2.6.11, hypothesis (1)]).

We can view RMap/Mg,n
(Cg,n, X×Mg,n) as a (derived) moduli stack for famil-

ies of prestable maps to X; in particular, it is only Artin and not Deligne–Mumford.
Since our reasoning for proving the quantum Lefschetz principle is purely formal,
it will mainly work at the level of these general mapping stacks. However, we
are interested in a more geometric subclass of maps, which only have finite auto-
morphisms and define a Deligne–Mumford substack: this comes down to impos-
ing a stability condition on the maps.
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Since our result holds for stacky targets as well as schematic ones, we will
use an adapted stability condition, inspired by the quasimap stability condition
of [CCK15] for global quotient orbifolds, and laid out for this generality in some
more detail in [Ker21, §4.2.1.1].

Construction 3.1.6 (Stability condition). Let L = L0 ⊗ ε ∈ Pic(X) ⊗Z Q be a line
bundle with ε positive.

Say, following [Hei18] as a simplified version of the criterion of [Hal18], that
a point x of X is L0-stable (or equivalently, since ε > 0, L-stable) if for any map
f : [A1/Gm] → X such that f(0) 6= f(1), the weight of the Gm-action on f(0)∗L0

(a quasicoherent sheaf on {0} ' [∗/Gm] ⊂ [A1/Gm], viewed as a Gm-equivariant
module) is negative. We will also require (as in [Hei18]) that the stable points
have finite isotropy groups, so that the L-stable locus defines a Deligne–Mumford
substack XL-st ⊂ X.

If (C;Σ1, . . . , Σn) is an n-pointed stacky curve, a representable morphism C →
X is said to be pre-L-quasistable if it maps the generic point of any irreducible
component of C to XL-st (so that it has only a finite number of basepoints), and its
basepoints are disjoint from the special points of C.

Since XL-st is a DM stack, it makes sense to require in addition that the restric-
tion of L0 be ample, and we do so. We can now further say that f : C → X is
L-quasistable if

(1) letting e denote the least common multiple of the ord(Aut(x)) for x points
of X and |C| the coarse moduli space of C, we have that

(20) ω|C|

(
n∑

i=1

|Σi|

)
⊗ (f∗Le

0)
ε/e

is ample;
(2) for any point p of C, ε · lgthf(p) ≤ 1, where lgthf(p) is the order of contact

of f with the unstable locus of X at p.

The quasistability condition for a map from a stable curve to X, that is a point
of Map/Mg,n

(Cg,n, X×Mg,n), is open, and thus defines, for any target class β on
X, an open substack which we denote Mg,n(X,β) — leaving the polarisation L

implicit since it will not play a role in the results of this paper.
Now, by [TV08, Corollary 2.2.2.10] the (small) Zariski∞-sites of a derived stack

M and of its truncation t0 M are equivalent (and in particular 1-sites). It ensues as
in [STV15, Proposition 2.1] that any open substack U of t0 M lifts uniquely to an
open sub-derived stack RU ⊂ M such that RU×M t0 M = U (so in particular RU
is a derived thickening of U).

Definition 3.1.7. The derived moduli stack RMg,n(X,β) of genus-g, n-pointed
stable quasimaps to X of class β is the open sub-derived stack of RMap/Mg,n

(Cg,n, X×Mg,n)

corresponding to the open substack Mg,n(X,β) ⊂ Map/Mg,n
(Cg,n, X×Mg,n).

By remark 3.1.3 and corollary 3.1.4, when Xst is smooth, RMg,n(X,β) enhances
to a (quasi-smooth) derived geometric object the data of the moduli stack Mg,n(X,β)
and its perfect obstruction theory.
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3.2. Identification of the derived moduli stacks. Let X be an Artin derived stack
and E ∈ Perf(OX) a perfect OX-module, giving the perfect cone E = VX(E). Let s
be a section of E, and denote

(21) Z = X ×
s,E,0

X ⊂ X

its (derived) zero locus.
For a fixed morphism π : C → M of derived k-stacks proper and of finite cohomo-

logical dimension, we consider the universal map from a base-change of C over the
derived mapping M-stack RMap/M (C, X×M):

(22)

C×
M

RMap/M (C, X×M) X

RMap/M (C, X×M)

p

ev

.

Let E := p∗ ev∗ E = VRMap
/M(C,X×M)(p∗ ev∗ E) be the induced abelian (and

perfect by remark 2.1.9 if p is quasi-smooth) cone over RMap/M (C, X×M), and
σ := p∗ ev∗ s its induced section. Write also 0E : RMap/M (C, X×M) → E for the
zero section.

Theorem 3.2.1. There is an equivalence of RMap/M(C, X×M)-derived stacks

(23) RMapM (C, Z×M) ' RMap/M (C, X×M) ×
σ,E,0E

RMap/M (C, X×M) ,

that is the diagram

(24)

RMapM (C, Z×M) RMap/M (C, X×M)

RMap/M (C, X×M) E = p∗ ev∗ E

u2

u1

y
σ=p∗ ev∗ s

0E

is cartesian.

The theorem will follow directly from some formal results.
We first note that, since we work in the∞-category dStk, which as an∞-topos

is cartesian closed, its the internal hom∞-functor RMap(−,−) is a right-adjoint to
taking cartesian product, so by [RV22, Theorem 2.4.2] preserves limits.

Remark 3.2.2. This limit preservation property is also due to the more conceptual
reason that, in enriched ∞-categories, limits and colimits can be defined repres-
entably, cf. [Ker21, Proposition 1.1.2.2.8, Example 1.1.2.2.9].

Applying this to our case, we find that RMap/M (C, Z×M) is equivalent to the
fibre product

(25) RMap/M (C, X×M) ×
RMap

/M(C,E×M)
RMap/M (C, X×M) ,

with structure morphisms induced by s and the zero section of E. Hence, in or-
der to prove theorem 3.2.1 we only need to identify the two derived stacks over
which the fibre products are taken (as well as the two pairs of structure maps), the
derived stack of maps to the abelian cone E and the induced cone E = p∗ ev∗ E.
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Proposition 3.2.3. There is an equivalence of RMap/M (C, X×M)-derived stacks

(26) RMap/M (C, E×M) ' E.

Proof. Let a : S → RMap/M (C, X×M) be an RMap/M (C, X×M)-stack, with cor-
responding family Ca = a∗C = S ×M C → S (where we implicitly push the
structure maps forward along RMap/M (C, X×M) → M). Note that, as p : C ×M

RMap/M (C, X×M) → RMap/M (C, X×M) is just projection onto the first factor,
we have

p−1(a) = S×RMap
/M(C,X×M)

(
RMap/M (C, X×M)×M C

)
= S×M C =: Ca,

(27)

as seen in the cartesian diagram

(28)

Ca = S×
M

C RMap/M (C, X×M)×
M

C C

S RMap/M (C, X×M) M

ã

y
p

y

a

.

By lemma 2.1.8, as π : C→M was supposed of finite cohomological dimension
and morphisms of finite cohomological dimension are stable by base-change, we
have

E(a) = VRMap
/M(C,X×M)(p∗ ev∗ E)(a)

= p∗VC×MRMap
/M(C,X×M)(ev∗ E)(a)

= VC×MRMap
/M(C,X×M)(ev∗ E)(Ca)

= homPerf(OCa) (OCa
, ã∗ ev∗ E) = hom/X(Ca, E),

(29)

where ev ◦ã : Ca → X is the map from a family of curves to X classified by a.
Meanwhile, we have by definition

RMap/M (C, E×M) (a)

=homRMap
/M(C,X×M)(S,RMap/M (C, E×M))

'hom/M(S,RMap/M (C, E×M)) ×
hom/M(S,RMap

/M(C,X×M))
{a}.

(30)

Indeed4, [Lur09, Lemma 5.5.5.12] shows that for any morphism p : M′ → M in
an ∞-category and any cospan S → M′ ← T over M′ we have hom/M′(S, T) '
hom/M(S, T)×hom/M(S,M′) {p} ; and we can compute

RMap/M (C, E×M) (a)

'hom/M(S×M C, E×M) ×
hom/M(S×MC,X×M)

{a}

=hom/X×M(Ca, E×M) = hom/X(Ca, E).

(31)

�

4This argument was suggested to the author by Benjamin Hennion



A CATEGORIFICATION OF THE QUANTUM LEFSCHETZ PRINCIPLE 17

This completes the proof of theorem 3.2.1. �

In our setting, we will have M = Mg,n, C = Cg,n, and the morphism of finite
cohomological dimension π : C → M is πg,n the universal curve over the moduli
stack of prestable stacky curves of genus g with n marked points.

We will also write pg,n = p, evg,n = ev and Eg,n = E = (pg,n)∗ ev∗
g,n E.

Corollary 3.2.4 (Geometric quantum Lefschetz principle). Suppose X satisfies the
conditions required for construction 3.1.6 (that is, X is 1-Artin and has a line bundle L0

whose stable locus is 1-Deligne–Mumford and quasiprojective with L0 as ample polarisa-
tion), and fix a class β ∈ A1X. There is an equivalence of RMap/Mg,n

(Cg,n, Z×Mg,n)-
derived stacks

(32)
∐

i∗γ=β

RMg,n(Z, γ) ' RMg,n(X,β) ×
E|RMg,n(X,β)

RMg,n(X,β).

Proof. Note first that, as Zariski-open immersions are stable by pullbacks, both∐
i∗γ=β RMg,n(Z, γ) and RMg,n(X,β)×E RMg,n(X,β) are open sub-derived stacks

of RMap/Mg,n
(Cg,n, Z×Mg,n), so by [STV15, Proposition 2.1] to show that they

are equal it is enough to show that their truncations define identical substacks of
t0 RMap/Mg,n

(Cg,n, Z×Mg,n).
As explained in remark 3.1.5, the truncation of such a derived mapping stack

with (necessarily truncated) source flat over the truncated base is Map/Mg,n
(Cg,n, t0(Z×Mg,n)),

and similarly

(33) t0

(
RMg,n(X,β)×

E
RMg,n(X,β)

)
= Mg,n(X,β)

t
×
t0 E

Mg,n(X,β).

In addition, the truncation∞-functor commutes with colimits (see [TV08, proof of
Lemma 2.2.4.1]) so

(34) t0

( ∐
i∗γ=β

RMg,n(Z, γ)

)
=
∐

i∗γ=β

Mg,n(t0 Z, γ).

We now compare the two stacks (which are 1-algebraic, and thus 1-stacks, i.e.
taking values in 1-groupoids) pointwise. For any S → Mg,n (with correspond-
ing prestable genus-g curve CS → S), we have that

(∐
i∗γ=β Mg,n(t0 Z, γ)

)
(S) =∐

i∗γ=β Mg,n(t0 Z, γ)(S) is tautologically the disjoint union (over γ ∈ i−1
∗ (β)) of

the groupoids of S-indexed families of stable maps from CS to t0 Z of class γ, and
(35)(

Mg,n(X,β)
t
×
t0 E

Mg,n(X,β)
)
(S) ' Mg,n(X,β)(S) ×

t0 E|Mg,n(X,β)(S)
Mg,n(X,β)(S)

with t0 E|Mg,n(X,β)(S) = hom(CS, t0 E). The latter (2, 1)-fibre product (of group-
oids) consists of pairs of stable maps f1, f2 from CS to X equipped with an equi-
valence between their images s ◦ f1 and 0 ◦ f2 in t0 E, so that the obvious functor

(36)
∐

i∗γ=β

Mg,n(t0 Z, γ)(S)→ (
Mg,n(X,β)

t
×
t0 E

Mg,n(X,β)
)
(S)

sending a stable map f : CS → Z to (iZ↪→X ◦ f, iZ↪→X ◦ f,1CS
) is clearly an equival-

ence. �
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We may now apply proposition 2.2.2 to deduce a proof of theorem B. In the
next section 4, we will see how we can recover from this and corollary 2.2.6 the
classical (virtual) quantum Lefschetz formula.

Remark 3.2.5. Further evidence for this geometric form of the quantum Lefschetz
principle can also be found by comparing the tangent complexes. Let us write tem-
porarily M(X) and M(Z) for the moduli stacks of stable maps RMg,b(X,β) and∐

i∗γ=β RMg,n(Z, γ), and M′(Z) for the zero locus M(X) ×E M(X). The univer-
sal property of the latter stack induces a canonical morphism denoted Υ : M(Z)→
M′(Z) such that u′

i◦Υ = ui for i = 1, 2 where ui : M(Z) ↪→M(X) and u′
i : M

′(Z) ↪→
M(X) are the canonical arrows (as in eq. (24)).

We know from proposition 3.1.2 that TM(X)/Mg,n
' pg,n,∗ ev∗

g,n TX|M(X). There
is a fibre sequence i∗1LX → LZ → Li1 : Z/X, and as Z sit by definition in a cartesian
square we have that Li1 = i∗2LX/E = E∨[1]|Z (where once again we have writ-
ten i1,2 : Z ↪→ X the two canonical inclusions). As both pushforward and pull-
back preserve fibre sequences, we obtain finally that TM(Z)/Mg,n

is the fibre of the
morphism pg,n,∗ ev∗

g,n TX|M(Z) → pg,n,∗ ev∗
g,n E|M(Z).

Following the same logic, writing M′(Z) for the zero locus, we see that TM′(Z)

is the fibre of TM(X) = pg,n,∗ ev∗
g,n TX|M(X) → pg,n,∗ ev∗

g,n E|M′(Z). But we have
seen that Υ∗ ◦ u′,∗

i = u∗
i so it is clear that Υ∗TM′(Z) ' TM(Z).

As it is sufficient and necessary for a morphism of derived stacks to be an equi-
valence that it induce an isomorphism on the truncation and that its (co)tangent
complex vanish, this is another way of proving theorem 3.2.1.

Example 3.2.6. Let (X, f : X → A1) be a Landau–Ginzburg model, from which we
deduce the perfect cone T∨X = VX(LX) and section ddRf, whose zero locus is by
definition the critical locus RCrit(f) (which is the intersection of two Lagrangians
in a 0-shifted symplectic derived stack and thus carries a canonical (−1)-shifted
symplectic form). Then the derived moduli stack of stable maps to RCrit(f) is the
zero locus of the induced section of

(37) p∗ ev∗ T∨X = VRMg,n(X,β)(p∗(ev∗ LX))

But notice that

(38) T∨RMg,n(X,β) ' VRMg,n(X,β)((p∗ ev∗ TX)
∨) ' VRMg,n(X,β)(p! ev∗ LX)

where p! : F 7→ p∗(F
∨)∨ ' p∗(F⊗ωp) is the left adjoint to p∗ (by [Lur19, Propos-

ition 6.4.5.3]), so RMg,n(RCrit(f), β) is not a critical locus and so cannot in general
be expected to carry a (−1)-shifted symplectic structure if (g, n) differs from (0, 1)
or (1, 0).

It is also possible to go the other way, that is to obtain a Landau–Ginzburg
model from our general setting. If $ : E∨ → X is the dual of the perfect cone with
section s, then the section $∗s of $∗E can be paired with the tautological section t

of $∗E∨, defining a function ws = 〈s, t〉 on the total space E∨. By [Isi12, Corollary
3.8], if X is smooth, there is an equivalence Cohb(Z) ' Sing(RZero(ws)/Gm) with
the Gm-equivariant dg-category of singularities of RZero(ws) (where Gm acts by
rescaling on the fibres of E∨). However we only have Z = RCrit(ws) if Z is smooth
(see [CJW19, Lemma 2.2.2] in the regular and underived case).
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4. FUNCTORIALITY IN INTERSECTION THEORY BY THE CATEGORIFICATION OF
VIRTUAL PULLBACKS

We have obtained (as theorem B) a categorified form of the quantum Lefschetz
principle, which in the cases where E = p∗ ev∗ E is a vector bundle we can by co-
rollary 2.2.6 decategorify by passing to the G0-theory groups (or, more generally,
the G-theory spectra) of the derived moduli stacks. To show that our statement is
indeed a categorification of the quantum Lefschetz principle, it remains to com-
pare it with the virtual statement, in the G-theory of the truncated moduli stacks.
As explained in the introduction, this will be obtained through an appropriate con-
struction of virtual pullbacks. These were defined in [Man12] (and in [Qu18] for
G0-theory) from perfect obstruction theories. Following the understanding of vir-
tual classes and the constructions of [MR18], we will give an alternative construc-
tion from derived thickenings. To ensure consistency, we show in subsection 4.2
that our construction coincides with that of [Qu18] when both are defined, and
we use it in subsection 4.3 to get back the virtual form of the quantum Lefschetz
formula.

Remark 4.0.1. The derived origin of virtual pullbacks was already considered in [Sch11,
Section 7], where it is shown that any morphism of DM stacks which is the clas-
sical truncation of a morphism of derived DM stacks, with the induced obstruc-
tion theory, carries the compatibility necessary for the construction of a virtual
pullback. However, the origin of the virtual classes and their precise relation to
derived thickenings was still considered mysterious, and no direct construction of
the virtual pullbacks from derived algebraic geometry was given.

4.1. Definition from derived geometry. Let f : X → Y be a quasi-smooth morph-
ism of derived stacks, that is its cotangent complex Lf : X/Y is of perfect Tor-amplitude
in [−1, 0].

Remark 4.1.1. By [GR17a, Chapter 4, Lemma 3.1.3], as the quasi-smooth morphism
f is of finite Tor-amplitude, the pullback of quasicoherent sheaves f∗ maps Cohb(Y)

to Cohb(X). As we work in G-theory, which is the K-theory of the stable∞-category
of bounded coherent sheaves, the notation f∗ will be understood in this section to
mean the restriction of the pullback operation to coherent sheaves.

Recall that, due to the theorem of the heart (cf. [Bar15, Theorem 6.1]) and [Lur19,
Corollary 2.5.9.2 with n = 0], the closed embedding X : t0 X ↪→ X induces an
equivalence X,∗ : G(t0 X)

'−→ G(X) in G-theory, whose inverse at the level of G0-
groups is given by

(
π0(X,∗)

)−1
: G0(X) 3 G 7→∑i≥0(−1)i[πi(G)] ∈ G0(t0 X).

It is therefore natural to define the virtual pullback along t0 f to be given by the
actual pullback along f, intertwined with these isomorphisms.

However we wish to consider the virtual pullback as a bivariant class, that is
defined as a collection of maps G(Y′) → G(X ×Y Y′) = G(X ×t

Y Y′) indexed by
all t0 Y-schemes Y′ → t0 Y, or more generally by all derived Y-schemes Y′ → Y.
Then the virtual pullback we defined should be the map corresponding to the
t0 Y-scheme 1t0 Y : t0 Y = t0 Y.

We recall that we use the notation ×t (a fibre product decorated by t) to differ-
entiate the “truncated” (1- 2-categorical, for our moduli 1-stacks) fibre products of
classical stacks from the implictly∞-categorical fibre products of derived stacks.
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Definition 4.1.2. The bivariant virtual pullback along f is the collection, indexed
by all Y-schemes a : Y′ → Y, of maps (t0 f)

!,a
DAG : G(t0 Y

′)→ G(t0(Y
′×Y X)) defined

as follows.
For a morphism of schemes a : Y′ → Y, we have the diagram

(39)

t0

(
Y′ ×

Y
X
)
' t0 Y

′ t
×
t0 Y

t0 X Y′ ×
Y
X Y′

X Y

Y′×YX f̃

y a

f

.

Then we set (t0 f)
!,a
DAG := (Y′×YX,∗)

−1 ◦ f̃∗ ◦ Y′,∗.

Lemma 4.1.3. The virtual pullback only depends on t0 a : t0 Y
′ → t0 Y. That is, for any

a1, a2 : Y
′
1, Y

′
2 → Y with t0 a1 = t0 a2, the virtual pullbacks f!,a1

DAG and f!,a2

DAG induced by
a1 and a2 are equivalent.

Proof. For any a : Y′ → Y, we compare the virtual pullbacks induced by a and

t0 Y
′ t0 a−−→ t0 Y

Y−→ Y.

(40)

t0 Y
′ t
×
t0 Y

t0 X Y′ ×Y X Y′

t0(Y
′)×Y X t0 Y

′

X Y

f̃

a

f̂

i

q

Y◦t0 a

f

The back square (the one exhibiting f̃ ◦ i ' Y′ ◦ f̂) is cartesian and its side Y′ is a
closed immersion and thus proper, so the base-change formula gives f̃∗ ◦ Y′,∗ =

i∗f̂
∗. Commutativity of the leftmost triangle implies that i∗t0 Y′×YX,∗ = Y′×YX,∗,

and as both closed immersions involved induce isomorphisms in G-theory, we
have (Y′×YX,∗)

−1i∗ = (t0 Y′×YX,∗)
−1. Putting the ingredients together, we finally

obtain that
(41)

f!,aDAG := (Y′×YX,∗)
−1f̃∗Y′,∗ = (Y′×YX,∗)

−1i∗f̂
∗ = (t0 Y′×YX,∗)

−1f̂∗ =: f!,Y◦t0 a
DAG .

�

Remark 4.1.4 (Functoriality). The virtual pullbacks satisfy obvious functoriality

properties. Let X f−→ Y
g−→ Z be two composable arrows, and let a : Z′ → Z be

a Z-scheme. We have the commutative diagram

(42)

t0(Z
′ ×Z X) t0(Z

′ ×Z X)

Z′ ×Z X Z′ ×Z Y Z′

X Y Z

Z′×ZX

Z′×ZY

f̃ g̃

b a

f g
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It follows by associativity of fibre products that

(t0 f)
!,b
DAG ◦ (t0 g)

!,a
DAG = ((Z′×ZY)×YX,∗)

−1 ◦ f̃∗ ◦ (Z′×ZY,∗) ◦ (Z′×ZY,∗)
−1 ◦ g̃∗ ◦ Z′,∗

= (Z′×ZX,∗)
−1 ◦ g̃f

∗
◦ Z′,∗ =: (t0(gf))

!,a
DAG.

(43)

4.2. Comparison with the construction from obstruction theories.

Construction 4.2.1 (Virtual pullbacks from perfect obstruction theories). Let g : V →
W be a morphism of Artin stacks of Deligne–Mumford type (i.e. relatively DM)
endowed with a perfect obstruction theory ϕ : E → Lg : V/W , inducing the closed
immersion ϕ∨ : Cg : V/W ↪→ E, where E = t0(VV(E[1]

∨)) is the vector bundle (Pi-
card) stack associated with E and Cg is the intrinsic normal cone of g (constructed
in [BF97]). As in [MR18] we define a derived thickening RϕV of V as the derived
intersection

(44)
RϕV Cg

V E

y
p

q

ϕ∨

0E

.

Note that the arrow p is a retract of V , and provides a splitting of the induced
perfect obstruction theory ∗VLRϕV → LV . We may use it to define a map of derived

stacks Rϕg : RϕV
p−→ V

f−→W which is a derived thickening of g.

We also recall the construction of the virtual pullback g!
ϕ, or g!

POT, from the
perfect obstruction ϕ, defined in [Man12] for Chow homology then [Qu18] for
G0-theory.

Let a : W′ → W and write g′ : V ′ → W′ the base-change of g. Recall that one
may define a deformation space (constructed in [KR19, Theorem 4.1.13] for quasi-
smooth closed immersions of derived stacks, and extended by [Hek21, Proposition
7.6.2] to arbitrary closed immersions) DV′W′ over P1

k , with general fibre W′ giv-
ing the open immersion j : W′ × A1

k ↪→ DV′W′, and special fibre Cg′ giving the
complementary closed immersion i : Cg′ × {∞} ↪→ DV′W′. It follows that there is
an exact sequence of abelian groups G0(Cg′) → G0(DV′W′) → G0(W

′ × A1) → 0
(coming from the fibred sequence of G-theory spectra). Furthermore, as (by excess
intersection) i∗i∗ is equivalent to tensoring by the symmetric algebra on the conor-
mal bundle of Cg′ in DV′W′ and as the latter is trivial, we have i∗i∗ = 0, inducing
a map G0(W

′ × A1) → G0(Cg′): concretely, any section j∗,−1 of j∗ gives the same
map when post-composed with i∗ so we do have a well-defined map i∗j∗,−1. The
specialisation map sp : G0(W

′) → G0(Cg′) is then defined by precomposing it by
pr∗ : G0(W

′) → G0(W
′ × A1). Finally, the cartesian square defining V ′ induces

by [Man12, Proposition 2.26] a closed immersion c : Cg′ ↪→ a∗Cg = V ′ ×V Cg, and
the virtual pullback g!,a

ϕ along g is constructed as the composite
(45)

g!,a
ϕ : G0(W

′)
sp−→ G0(Cg′)

c∗−→ G0(a
∗Cg)

(a∗ϕ∨)∗−−−−−−→ G0(a
∗E = V ′×VE)

0∗
a∗E−−−→ G0(V

′).

Lemma 4.2.2. The virtual pullback (t0 Rϕg)!DAG as defined above for the map Rϕg co-
incides with the virtual pullback g!

ϕ of [Man12; Qu18]: for any a : W′ → W, we have
(t0 Rϕg)!,aDAG = g!,a

ϕ : G0(W
′)→ G0(V

′).
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Note that this is essentially also proved as [Kha22, Proposition 6.8].

Proof. We adapt the results of [Jos10, Proposition 3.5] to the more general case of a
morphism that need not be a regular embedding.

Let again a : W′ → W and write g′ : V ′ → W′ the base-change of g. We now
review our construction of the virtual pullback from derived thickenings from the
point of view of the perfect obstruction theory. The map g!,a

DAG of definition 4.1.2
is computed in the following way: we define a derived thickening RϕV ′ of V ′ =
V×t

WW′ as V ′×ECg; note that we have RϕV ′ = V ′×VRϕV and writing p′ : RϕV ′ →
V ′ we obtain a derived thickening Rϕg′ = g′ ◦ p′ : RϕV ′ →W′ of g′. Then g!,a

DAG is
the pullback along Rϕg′ followed by the inverse of RϕV′,∗.

We also note that the fibred product V ′×a∗E(a
∗Cg) is the base-change of V×ECg

along a′ : V ′ → V , so the square

(46)
RϕV ′ a∗Cg

V ′ a∗E

y
p′

q′

a∗ϕ∨

0a∗E

is cartesian. As p′ is proper, we have 0∗a∗E(a
∗ϕ∨)∗ = p′

∗q
′,∗; concomitantly, as

p′ is a retract of RϕV′ we have in G-theory (RϕV′,∗)
−1 = p′

∗. We conclude that
the virtual pullback of [Qu18] coincides with (RϕV′,∗)

−1 ◦q′,∗ ◦ c∗ ◦ sp, and thus it
only remains to check that the latter part specialises to (Rϕg′)∗ = p′,∗◦g′,∗. But the
deformation space DV′W′ provides exactly an interpolation between g′ : V ′ →W′

and V ′ ↪→ Cg′ , so by transporting this comparison along the A1-invariance of G-
theory the lemma is proved. �

Recall that for any quasi-smooth morphism f : X → Y of derived Artin stacks,
by [STV15, Proposition 1.2] the canonical map ϕ : j∗XLf → Lt0 f is a perfect obstruc-
tion theory.

Proposition 4.2.3. Let f : X → Y be a quasi-smooth relatively DM map of derived
Artin stacks. The virtual pullback (t0 f)

!
DAG defined with derived geometry is equal to

(t0 Rϕ t0 f)
!
DAG, and thus to the virtual pullback (t0 f)

!
ϕ of [Man12; Qu18], induced by

the obstruction theory ϕ : j∗XLf → Lt0 f.

Proof. The proof is similar to the one sketched in [MR18, Proposition 4.3.2] for the
comparison of the virtual classes defined from perfect obstruction theories and
derived geometry, which mainly followed [LS12]: one constructs a deformation to
the normal bundle of the closed immersion X : t0 X ↪→ X, and finally uses that G-
theory is A1-invariant. Note that the main ingredient which was missing to make
the proof of [MR18] precise, deformation to the normal cone for derived stacks,
has now been constructed by [Hek21]. �

We shall henceforth simply write (t0 f)
! for the virtual pullback along f.

Example 4.2.4 (Virtual classes). Suppose Y = Spec(k) so f : X→ Spec(k) is the struc-
ture morphism. The virtual structure sheaf of t0 X is

[
Ovir

t0 X

]
= f!,1X([OSpec(k)]) =

(X,∗)
−1([OX]).
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Example 4.2.5. Suppose that the classical map g is already a quasi-smooth immer-
sion, so that 1Lg

is a perfect obstruction theory. Then the virtual pullback is given
by the Gysin pullback g!, studied in details for example in [Jos10].

Remark 4.2.6 (Virtual pullbacks in generalised motivic homology theories). Our
construction of virtual pullbacks only relies on the fact that G-theory is insensitive
to the non-reduced structure, and the identification with the classical definition re-
quires simply the specialisation morphism and, more generally, the A1-invariance.
These ingredients are present in motivic homotopy theory (by construction for
the A1-invariance, and by [Kha19a, Corollary 3.2.9] for the insentivity to derived
structures), so the virtual pullbacks in motivic cohomology theories also admit the
derived geometric interpretation.

In fact such virtual pullbacks were constructed for motivic Borel–Moore homo-
logy with coefficients in any étale motivic spectrum in [Kha19b, Construction 3.4]
from the virtual pullbacks canonically associated with a quasi-smooth derived en-
hancement (through its derived deformation space).

4.3. Recovering the quantum Lefschetz formula.

Proposition 4.3.1. With the notations of subsection 2.2, if F is a vector bundle then
(t0 u)∗

[
Ovir

T

]
=
[
Ovir

M

]
⊗ λ−1(π0F

∨) in G(M).

Proof. By naturality of the transformation , we have (t0 u)∗ = (M,∗)
−1u∗T,∗ so

that (t0 u)∗(t0 u)
! = (M,∗)

−1u∗u
∗M,∗ = (M,∗)

−1(M,∗(−) ⊗ λ−1(F
∨)) by corol-

lary 2.2.6. Hence (t0 u)∗
[
Ovir

T

]
= (t0 u)∗(t0 u)

!
[
Ovir

M

]
= (M,∗)

−1(λ−1(F
∨)).

By [Lur19, Corollary 25.2.3.3], as F∨ is flat over OM so are its exterior powers∧n
(F∨). In particular, by [TV08, Proposition 2.2.2.5. (4)] they are strong OM-

modules, meaning that πi(
∧n

F∨) ' πi(OM) ⊗π0(OM) π0(
∧n

F∨) for all natural
integers i and n, and we conclude that

(t0 u)∗
[
Ovir

T

]
=
∑
i≥0

(−1)i
∑
n≥0

(−1)n
[
πi

(∧n
F∨
)]

=
∑
i≥0

(−1)i[πi(OM)]⊗
∑
n≥0

(−1)n
[∧n

π0(F
∨)
](47)

as required. �

Remark 4.3.2. In the setting of the quantum Lefschetz principle, the only cases in
which Eg,n is a vector bundle are when E is convex, that is R1p∗f

∗E = 0 for any
stable map (p : C → S, f : C → X) from a rational curve C, and thus the genus
is g = 0, which is the setting in which the quantum Lefschetz principle is already
known. We conclude that it is not possible to relax the hypotheses for the quantum
Lefschetz principle in G-theory, and that the more general version is thus only
valid in its categorified form.

One may also notice that as the cotangent complex of u is p∗ ev∗ E∨[1], which
has Tor-amplitude in [−2, 0] (in fact [−2,−1]) unless the above conditions are sat-
isfied, so that u is not quasi-smooth and the virtual pullback along it cannot be
defined.



24 DAVID KERN

Corollary 4.3.3. If E0,n = p0,n;∗ ev∗
0,n E is a vector bundle (that is if E is convex), the

G-theoretic quantum Lefschetz formula of theorem A holds:

(48) (t0 u)∗
∑

i∗γ=β

[
Ovir

M0,n(Z,γ)

]
=
[
Ovir

M0,n(X,β)

]
⊗ λ−1(π0p0,n;∗ ev∗

0,n E∨).

�
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